

Bayesian Networks

Goal: represent a joint distribution *P* over random variables $X = \{X_1, ..., X_n\}$

X ₁	X2	$P(X_1, X_2)$
false	false	0.1
false	true	0.2
true	false	0.3
true	true	0.4

Bayesian Networks

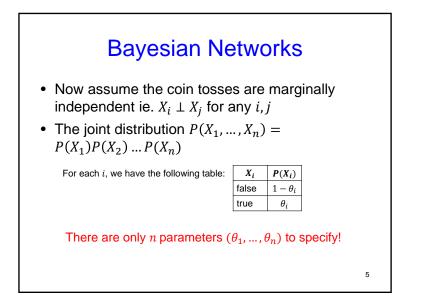
- If variables are binary, the joint distribution has $2^n 1$ probabilities
 - Expensive space usage
 - Human expert has hard time determining these numbers
 - Need large amounts of data to estimate these numbers accurately
- How do we represent a joint probability distribution compactly?
 - Solution: Exploit independence properties

3

Bayesian Networks

- Suppose we toss *n* coins and let *X_i* be the outcome of coin toss *i*
- The joint distribution $P(X_1, ..., X_n)$ has $2^n 1$ parameters

2



The Conditional Parameterization

- Define 2 random variables: Intelligence (I) and SAT score (S)
- We could represent the joint distribution as follows:

Ι	S	P(I,S)
low	low	0.665
low	high	0.035
high	low	0.06
high	high	0.24

The Conditional Parameterization • An alternative representation: P(I,S) =P(I)P(S|I)• Note: represents the causal process i.e. intelligence affects SAT score **P**(**I**) P(S|I)Ι Ι S 0.7 0.95 low low low high 0.3 high 0.05 low high low 0.2 0.8 high high Prior distribution over I Conditional probability 7 distribution of S given I

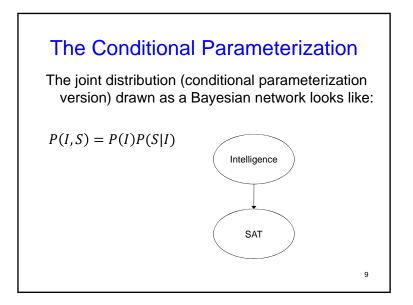
The Conditional Parameterization

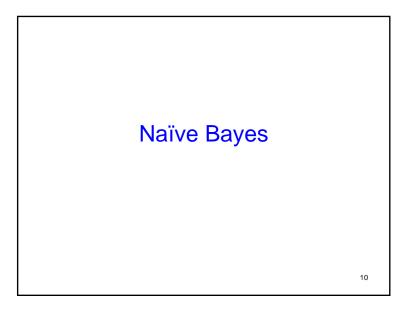
low $1 - \theta_{I=high}$ high $\theta_{I=high}$	I	P (I)
high θ_{I-high}	low	$1 - \theta_{I=high}$
5 ¹ -mgn	high	$\theta_{I=high}$

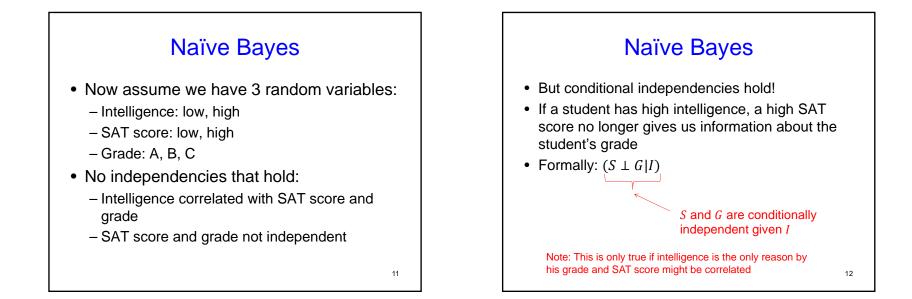
Ι	S	P(S I)
low	low	$1-\theta_{S=high I=low}$
low	high	$\theta_{S=high I=low}$
high	low	$1 - \theta_{S=high I=high}$
high	high	$\theta_{S=high I=high}$

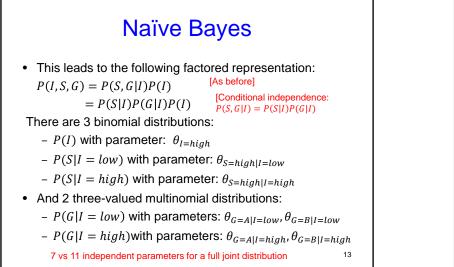
6

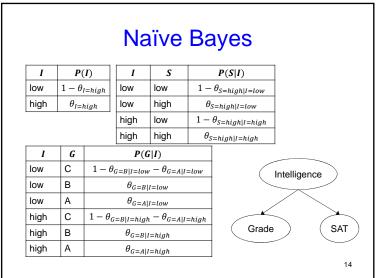
- There are 3 binomial distributions here: P(I), P(S|I = low), P(S|I = high)
- Only 3 independent parameters are needed: $\theta_{I=high}, \theta_{S=high|I=low}, \theta_{S=high|I=high}$

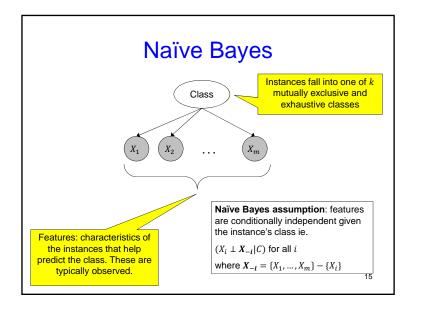


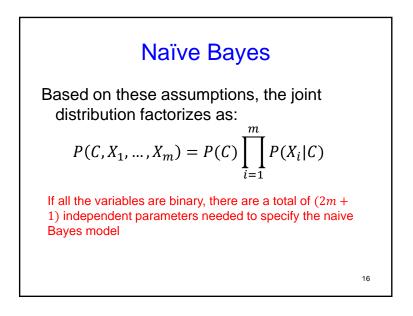


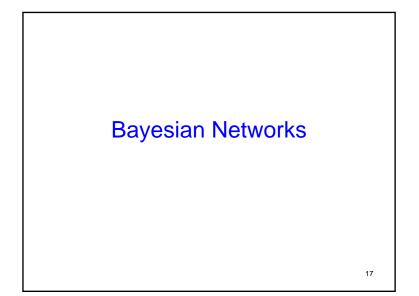












Bayesian Network

- A Bayesian network is composed of:
- The DAG structure
- The conditional probability distributions in each node

