Bayesian Networks 1:
Introduction

Bayesian Networks

Goal: represent a joint distribution P over random variables
X ={Xy, ... X}

X1 X2 P(X1,X2)
false false 0.1
false true 0.2
true false 0.3
true true 0.4

Bayesian Networks

« If variables are binary, the joint distribution has 2™ — 1
probabilities
— Expensive space usage

— Human expert has hard time determining these
numbers

— Need large amounts of data to estimate these
numbers accurately

* How do we represent a joint probability distribution
compactly?
— Solution: Exploit independence properties

Bayesian Networks

» Suppose we toss n coins and let X; be the
outcome of coin toss i

* The joint distribution P(Xy, ..., X,) has 2" —
1 parameters




Bayesian Networks

» Now assume the coin tosses are marginally
independent ie. X; L X; for any i, j

» The joint distribution P(X;, ..., X,) =
P(X1)P(X2) ... P(Xn)

For each i, we have the following table: X P(X;)

false | 1-6;

true 6;

There are only n parameters (6, ..., 6,) to specify!

The Conditional Parameterization

» Define 2 random variables: Intelligence (I)
and SAT score (S)

* We could represent the joint distribution as
follows:

I s |PUS)
low low 0.665
low high |0.035
high | low 0.06
high | high [0.24

The Conditional Parameterization
« An alternative representation: P(I,S) =
P(DP(SID
» Note: represents the causal process i.e.
intelligence affects SAT score

I 140)) 1 N P(S|D
low 0.7 low low 0.95
high [0.3 low high | 0.05

‘ high |low |[0.2

Prior distribution over I high |high |0.8
\ J
[
Conditional probability
distribution of S given I

The Conditional Parameterization

I P(D) I s P(SID

low 1~ Or2nign low |low 1 = Os=nign|i=tow

high B1=nigh low | high Os=hignji=tow
high | low 1 = Os=nignji=high
high | high Os=high|1=high

» There are 3 binomial distributions here:
P(I),P(S|I = low), P(S|I = high)
» Only 3 independent parameters are needed:
O1=high» Os=high|1=1ow> Os=high|i=high




The Conditional Parameterization

The joint distribution (conditional parameterization
version) drawn as a Bayesian network looks like:

P(1,S) = P(1)P(S|I) ‘
Intelligence

Naive Bayes
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Naive Bayes

* Now assume we have 3 random variables:
— Intelligence: low, high
— SAT score: low, high
—Grade: A, B, C

* No independencies that hold:

— Intelligence correlated with SAT score and
grade
— SAT score and grade not independent

1

Naive Bayes

But conditional independencies hold!
If a student has high intelligence, a high SAT
score no longer gives us information about the
student’s grade
Formally: (S L G|I)

| |

™

S and G are conditionally
independent given [

Note: This is only true if intelligence is the only reason by
his grade and SAT score might be correlated 12




Naive Bayes

» This leads to the following factored representation:
P(1,S5,G) = P(S,G|P(D) [As before]

[Conditional independence:

=P(SIDPGIDPU)  ps,6in = pesinp@GIn

There are 3 binomial distributions:

- P(I) with parameter: 6,_p;4n

- P(S|I = low) with parameter: 8s_pign|r=tow

- P(S|I = high) with parameter: 8s_p;gn|i=hign
* And 2 three-valued multinomial distributions:

- P(G|I = low) with parameters: 8¢ 41=1ow Oc=5|1=1ow

- P(G|I = high)with parameters: 8- a|1=high, Oc=B|1=hign

7 vs 11 independent parameters for a full joint distribution 13

Nalve Bayes

I P(D I s P(S|D

low |[1—=6_pign | |low low 1 = Os=nignji=tow

high B1=high low high Os=nighji=tow
high | low 1 — Os=nighi=hign
high | high Os=high|i=high

I G P(G|I)

low 1C | 1—6g=pj=tow ~ Os=ayi=tow Intelligence

low B Oc=B|1=1ow

low A Oc=alr=tow

high | C | 1= 06=pji=high — Oc=aj1=hign

high | B 0G=g|1=high

high |A O6=a|1=high

Naive Bayes

Instances fall into one of k
@ mutually exclusive and
exhaustive classes

N J

~

Naive Bayes assumption: features
are conditionally independent given
the instance’s class ie.

Features: characteristics of
the instances that help X; L X_;|C) forall i

predict the class. These are

typically observed. where X_; = (X, .., Xm} — (X}
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Naive Bayes

Based on these assumptions, the joint
distribution factorizes as:

P(C,Xy, .., X)) = P(C) np(xiw)
i=1

If all the variables are binary, there are a total of (2m +
1) independent parameters needed to specify the naive
Bayes model

16




Bayesian Networks
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Bayesian Network

A Bayesian network is composed of:
* The DAG structure

» The conditional probability distributions in
each node
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Bayesian Networks

» A Bayesian network is represented as a Directed
Acyclic Graph (DAG) G
— Nodes are random variables

— Edges correspond to the direct influence of one
random variable on another

» G can be viewed in two different ways:

— The skeleton for a compact, factored representation
of a joint distribution

— A compact representation for a set of conditional
independence assumptions about a distribution

« Both are equivalent
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Bayesian Networks

Intelligence

DAG Structure: intuitively,
each variable depends
directly only on its parents 20
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Bayesian Networks

P(G|D,l)

low

low

0.3

low

low

0.4

low

low

0.3

low

high

0.02

low

high

0.08

low

high

0.9

high

low

0.7

high

low

0.25

high

low

0.05

high

high

0.2

high

high

OO @|O|>P|O|(O|>|®|0|0O

0.3

high

high

0.5

Intelligence

P

low

0.7

high

0.3

S

P(sI

low

low

0.95

low

high

0.05

high

low

0.2

high

high

0.8

L

PLIG)

weak

strong

0.99
0.01

weak

0.4

strong

0.6

))UDUJO‘OO

weak

0.1

strong

0.9

21

Bayesian Networks

Each node has a local probability model

» Captures the conditional probability distribution
of the node given its parents ie.
P(X|Parents(X))

» Specifies a distribution over each value of X

given each possible joint assignment of values
to its parents

» A node with no parents eg. P(I) is conditioned
on the empty set of variables and is a marginal
distribution
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Bayesian Networks

With a Bayesian network, you can compute
the value of any state of the joint
probability distribution
P(l =high,D =low,G =B, S = high, L = weak)
= P(I = high)P(D =low)P(G = B| I = high, D = low)*

=0.3*0.6*0.08*0.8*0.4 = 0.004608

P(S = high| I = high)P(L = weak | G = B)

This uses the chain rule for Bayesian networks (more
on this later)
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