Bayesian Networks 2 Reasoning Patterns, Independencies

Reasoning Patterns

Reasoning Patterns

- A joint probability distribution allows us to calculate probabilities like:

$$
P(Y=\boldsymbol{y} \mid E=\mathbf{e})
$$

Evidence

- Bayes nets allow us to see how this probability changes as we observe different evidence

Reasoning Patterns

$P($ Letter $=$ Strong $)=0.502$

Reasoning Patterns

$\mathrm{P}($ Letter $=$ Strong $)=0.502$
$\mathrm{P}($ Letter $=$ Strong | Intelligence $=$ low $)=0.389$

Reasoning Patterns

$$
P(\text { Letter }=\text { Strong })=0.502
$$

$$
\mathrm{P}(\text { Letter }=\text { Strong } \mid \text { Intelligence }=\text { low })=0.389
$$

$$
P(\text { Letter }=\text { Strong } \mid \text { Intelligence }=\text { low, Difficulty }=\text { low })=0.513
$$

Reasoning Patterns

Predicting the "downstream" effects of evidence - instances of causal reasoning or prediction
$P($ Letter $=$ Strong $)=0.502$
$\mathrm{P}($ Letter $=$ Strong \mid Intelligence $=$ low $)=0.389$
$P($ Letter $=$ Strong \mid Intelligence $=$ low, Difficulty $=$ low $)=0.513$

Reasoning Patterns

$P($ Intelligence $=$ high $)=0.30$

Reasoning Patterns

$\mathrm{P}($ Intelligence $=$ high $)=0.30$
$\mathrm{P}($ Intelligence $=$ high \mid Grade $=\mathrm{C})=0.079$

Reasoning Patterns

$P($ Intelligence $=$ high $)=0.30$
$\mathrm{P}($ Intelligence $=$ high \mid Grade $=C)=0.079$
$\mathrm{P}($ Intelligence $=$ high \mid Letter $=$ Weak $)=0.14$

Reasoning Patterns

Reasoning from effects to causes are instances of evidential reasoning or explanation
$\mathrm{P}($ Intelligence $=$ high $)=0.30$
$P($ Intelligence $=$ high \mid Grade $=C)=0.079$
$\mathrm{P}($ Intelligence $=$ high \mid Letter $=$ Weak $)=0.14$
$P($ Intelligence $=$ high \mid Grade $=C$, Letter $=$ Weak $)=0.079$

Reasoning Patterns

Why does observing Difficulty=high make the probability 0.34 ?

Notice how Difficulty (causal factor for Grade) gave us information about Intelligence (another causal factor for Grade).

This is called "explaining away" (more about this in the next few lectures)

$$
\begin{aligned}
& \mathrm{P}(\text { Intelligence }=\text { high } \mid \text { Grade }=\mathrm{B})=0.079 \\
& \mathrm{P}(\text { Intelligence }=\text { high } \mid \text { Grade }=\mathrm{B}, \text { Difficulty }=\text { high })=0.34
\end{aligned}
$$

Independencies

What are some conditional independence statements in this network?
$(L \perp\{I, D, S\} \mid G)$
Once we know the student's grade, our beliefs about the quality of his recommendation letter are not influenced by any other variable
$(S \perp\{D, G, L\} \mid I)$
SAT score is conditionally independent of all other nodes given I

Independencies

What about : ($G \perp L \mid D, I)$? (conditioning on parents of G only)
Intuitively (and using our model), this is false. Suppose we have a smart student in a difficult class. If the student gets a strong letter, then we expect

P(Grade = A | Intelligence = high, Difficulty = high, Letter = strong) >
P (Grade = A | Intelligence = high, Difficulty = high)

Independencies

- Knowing the value of a variable's parents "shield" it from information relating directly or indirectly to its other ancestors
- Information about the variable's descendants can change its probability
- What's the general pattern?

Independencies

Definitions

- A Bayesian network structure G is a directed acyclic graph whose nodes represent random variables X_{1}, \ldots, X_{n}.
- Let $\operatorname{Parents}\left(X_{i}, \mathcal{G}\right)$ denote the parents of X_{i} in \mathcal{G},
- Let NonDescendants $\left(X_{i}\right)$, denote the variables in the graph that are not descendants of X_{i}.

Independencies

Then \mathcal{G} encodes the following set of conditional independence assumptions, called the local independencies, and denoted by $I_{\ell}(\mathcal{G})$:

The ℓ stands for "local"
For each variable X_{i} :
($X_{i} \perp$ NonDescendants $\left(X_{i}\right) \mid \operatorname{Parents}\left(X_{i}, \mathcal{G}\right)$

Informally: X_{i} is conditionally independent of its nondescendants given its parents

Graphs and Distributions

Graphs and Distributions

Distribution P

Has some set of independence relationships $I(\mathrm{P})$ eg. $(\boldsymbol{X} \perp \boldsymbol{Y} \mid \boldsymbol{Z})$

Graph G

Has some set of local independence relationships $I_{\ell}(G)$

Graphs and Distributions

Distribution P

- Let P be a distribution over \mathcal{X}.
- Let $I(P)$ be the set of independence assertions of the form $(X \perp Y \mid \boldsymbol{Z})$ that hold in P.

Graph G

- Let G be any graph associated with a set of independencies $I(G)$.
- \mathcal{G} is an I-map for a set of independencies $I(P)$ if $I(G) \subseteq I(P)$.

Note: any independencies that G asserts must hold in P but P may have additional independencies that are not reflected in G.

Graphs and Distributions

Three graphs with 2 variables X, Y :

Suppose we have the following 2 distributions:
$P_{\text {left }}$

\mathbf{X}	\mathbf{Y}	$\mathbf{P}(\mathbf{X}, \mathbf{Y})$
0	0	0.08
0	1	0.32
1	0	0.12
1	1	0.48

Pright

\mathbf{X}	\mathbf{Y}	$\mathbf{P}(\mathbf{X}, \mathbf{Y})$
0	0	0.4
0	1	0.3
1	0	0.2
1	1	0.1

All 3 graphs are I-maps of $P_{\text {left }}$ \mathcal{G}_{0} is not an I-map of $P_{\text {right }}$ since $(X \perp Y) \notin l(P)$

Graphs and Distributions

- Suppose we have a distribution P for which the student Bayes net is an I-map
- From the student Bayes net, we can see examples of the conditional independencies in $I(G)$ (and hence in $I(\mathrm{P})$):

$\frac{I(P)}{}$
$(L \perp\{I, D, S\} \mid G)$
$(S \perp\{D, G, L\} \mid I)$
$(G \perp L \mid D, I)$
$(I \perp D)$
\ldots

Graphs and Distributions

- We can decompose the joint distribution for the student Bayes net :

$$
\begin{aligned}
P(I, D, G, L, S) \\
=P(I) P(D \mid I) P(G \mid I, D) P(L \mid I, D, G) P(S \mid I, D, G, L) \\
{[\text { [Chain Rule] }}
\end{aligned}
$$

- But some of these conditional probability distributions are quite big eg. $P(S \mid I, D, G, L)$

Graphs and Distributions

Using the conditional independence assumptions:

- $(I \perp D) \in I(P)$ implies $P(D \mid I)=P(D)$
- $(L \perp\{I, D\} \mid G) \in I(P)$ implies $P(L \mid I, D, G)=P(L \mid G)$
- $(S \perp\{\mathrm{D}, \mathrm{G}, \mathrm{L}\} \mid \mathrm{I}) \in I(\mathrm{P})$ implies $\mathrm{P}(\mathrm{S} \mid \mathrm{I}, \mathrm{D}, \mathrm{G}, \mathrm{L})=$ $P(S \mid I)$

$$
\begin{aligned}
& P(I, D, G, L, S) \\
& =P(I) P(D \mid I) P(G \mid I, D) P(L \mid I, D, G) P(S \mid I, D, G, L) \\
& =P(I) P(D) P(G \mid I, D) P(L \mid G) P(S \mid I)
\end{aligned}
$$

Graphs and Distributions

$P(I, D, G, L, S)=P(I) P(D) P(G \mid I, D) P(L \mid G) P(S \mid I)$

- The joint distribution can be computed as a product of factors, one for each variable.
- Each factor represents a conditional probability of the variable given its parents in the network.
- This factorization applies to any distribution P for which $G_{\text {student }}$ is an I-Map.

Graphs and Distributions

The chain rule for Bayesian networks

- Let G be a Bayes net graph over the variables X_{1}, \ldots, X_{n}. We say that a distribution P over the same space factorizes according to G if P can be expressed as a product

$$
P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}, \mathcal{G}\right)\right)
$$

- A Bayesian network is a pair $\mathcal{B}=(G, P)$ where P factorizes over G, and where P is specified as a set of CPDs associated with G 's nodes. The distribution is often annotated $P_{\mathcal{B}}$.

Graphs and Distributions

From Theorems 3.1 and 3.2:
G is an I-map for P ie. $\left(X_{i} \perp\right.$ NonDescendants $\left(X_{i}\right) \mid$ Parents $\left(X_{i}, \mathcal{G}\right)$

$$
\stackrel{\uparrow}{6}
$$

P factorizes as:

$$
\left(P\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}, G\right)\right)\right)
$$

