

Independencies

- Knowing the value of a variable's parents "shield" it from information relating directly or indirectly to its other ancestors
- Information about the variable's descendants can change its probability
- What's the general pattern?

Independencies

Definitions

- A Bayesian network structure *G* is a directed acyclic graph whose nodes represent random variables X₁, ..., X_n.
- Let *Parents*(*X_i*,*G*) denote the parents of *X_i* in *G*,
- Let NonDescendants(X_i), denote the variables in the graph that are not descendants of X_i.

15

16

<text><text><equation-block><text><text><text><text>

Graphs and Distributions

Using the conditional independence assumptions:

- $(I \perp D) \in I(P)$ implies P(D | I) = P(D)
- (L \perp {I, D} | G) \in $\mathit{I}(\mathsf{P})$ implies P(L | I, D, G) = P(L | G)
- (S \perp {D, G, L} | I) \in $\mathit{I}(\mathsf{P})$ implies P(S | I, D, G, L) = P(S | I)

P(I, D, G, L, S)

= P(I)P(D | I)P(G | I, D)P(L | I, D, G)P(S | I, D, G, L)

 $= P(I)P(D)P(G \mid I, D)P(L \mid G)P(S \mid I)$

24

Graphs and Distributions

The chain rule for Bayesian networks

Let G be a Bayes net graph over the variables X₁, ..., X_n.
We say that a distribution P over the same space factorizes according to G if P can be expressed as a product

$$P(X_1,...,X_n) = \prod_{i=1}^n P(X_i \mid Parents(X_i,G))$$

• A Bayesian network is a pair $\mathcal{B} = (\mathcal{G}, \mathsf{P})$ where *P* factorizes over \mathcal{G} , and where *P* is specified as a set of CPDs associated with \mathcal{G} 's nodes. The distribution is often annotated $P_{\mathcal{B}}$.

26

