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Bayesian Networks 2
Reasoning Patterns, 

Independencies
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Reasoning Patterns

2

Reasoning Patterns

• A joint probability distribution allows us to 
calculate probabilities like:

P( Y = y | E = e)

• Bayes nets allow us to see how this 
probability changes as we observe 
different evidence

Evidence
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Reasoning Patterns
Intelligence

Grade SAT

Difficulty

Letter

P(Letter = Strong) = 0.502
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Reasoning Patterns
Intelligence

Grade SAT

Difficulty

Letter

P(Letter = Strong) = 0.502

P(Letter = Strong | Intelligence = low) = 0.389
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Reasoning Patterns
Intelligence

Grade SAT

Difficulty

Letter

P(Letter = Strong) = 0.502

P(Letter = Strong | Intelligence = low) = 0.389

P(Letter = Strong | Intelligence = low, Difficulty = low) = 0.513
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Reasoning Patterns
Intelligence

Grade SAT

Difficulty

Letter

P(Letter = Strong) = 0.502

P(Letter = Strong | Intelligence = low) = 0.389

P(Letter = Strong | Intelligence = low, Difficulty = low) = 0.513

Predicting the 
“downstream” effects of 
evidence – instances of 
causal reasoning or 
prediction
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Reasoning Patterns
Intelligence

Grade SAT

Difficulty

Letter

P(Intelligence  = high) = 0.30

8



3

Reasoning Patterns
Intelligence

Grade SAT

Difficulty

Letter

P(Intelligence  = high) = 0.30

P(Intelligence  = high | Grade = C) = 0.079
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Reasoning Patterns
Intelligence

Grade SAT

Difficulty

Letter

P(Intelligence  = high) = 0.30

P(Intelligence  = high | Letter = Weak) = 0.14

P(Intelligence  = high | Grade = C) = 0.079
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Reasoning Patterns
Intelligence

Grade SAT

Difficulty

Letter

P(Intelligence  = high) = 0.30

P(Intelligence  = high | Letter = Weak) = 0.14

P(Intelligence  = high | Grade = C) = 0.079

Reasoning from effects to 
causes are instances of 
evidential reasoning or 
explanation

P(Intelligence  = high | Grade = C, Letter = Weak) = 0.079 11

Reasoning Patterns
Intelligence

Grade SAT

Difficulty

Letter

Why does observing Difficulty=high 
make the probability 0.34?

Notice how Difficulty (causal factor for 
Grade) gave us information about 
Intelligence (another causal factor for 
Grade).

This is called “explaining away” (more 
about this in the next few lectures)

P(Intelligence  = high | Grade = B) = 0.079

P(Intelligence  = high | Grade = B, Difficulty = high) = 0.34
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Independencies
Intelligence

Grade SAT

Difficulty

Letter

What are some conditional independence 
statements in this network?

(L  {I, D, S} | G)
Once we know the student’s grade, our 
beliefs about the quality of his 
recommendation letter are not influenced 
by any other variable

(S  {D, G, L} | I)
SAT score is conditionally independent of 
all other nodes given I

13

Independencies
Intelligence

Grade SAT

Difficulty

Letter

What  about : (G  L | D, I)? (conditioning on parents of G only)

Intuitively (and using our model), this is false. Suppose we have a smart student in 
a difficult class. If the student gets a strong letter, then we expect

P( Grade = A | Intelligence = high, Difficulty = high, Letter =  strong ) > 
P( Grade = A | Intelligence = high, Difficulty = high)
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Independencies

• Knowing the value of a variable’s parents 
“shield” it from information relating directly 
or indirectly to its other ancestors

• Information about the variable’s 
descendants can change its probability

• What’s the general pattern?
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Independencies

Definitions
• A Bayesian network structure G is a directed 

acyclic graph whose nodes represent random 
variables X1, …, Xn. 

• Let Parents(Xi,G) denote the parents of Xi in G, 
• Let NonDescendants(Xi), denote the variables in 

the graph that are not descendants of Xi. 
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Independencies
Then G encodes the following set of conditional 

independence assumptions, called the local 
independencies, and denoted by Il(G):

For each variable Xi: 
(Xi  NonDescendants(Xi) | Parents(Xi,G))

Informally: Xi is conditionally independent of its 
nondescendants given its parents
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The l stands for “local”

Graphs and Distributions
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Graphs and Distributions

Distribution P
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X

Z

Y

How do we represent P using G?

Graph G

Has some set of 
independence 
relationships I(P) 
eg. (X  Y | Z) 

Has some set of local 
independence 
relationships Il(G)

Graphs and Distributions

Distribution P
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Graph G

• Let G be any graph 
associated with a set of 
independencies I(G). 

• G is an I-map for a set of 
independencies I(P) if 
I(G)  I(P).

• Let P be a distribution 
over X. 

• Let I(P) be the set of 
independence assertions 
of the form (X  Y | Z) 
that hold in P.

Note: any independencies that G asserts must hold in P but 
P may have additional independencies that are not 
reflected in G.
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Graphs and Distributions

X Y P(X,Y)

0 0 0.08

0 1 0.32

1 0 0.12

1 1 0.48

X Y P(X,Y)

0 0 0.4

0 1 0.3

1 0 0.2

1 1 0.1

X

Three graphs with 2 variables X, Y:

Independence assumption: X  Y

No independence assumptions encoded

No independence assumptions encoded

Y

X Y

X Y

Suppose we have the following 2 distributions:

Pleft Pright

G0

GX→Y

GX←Y

All 3 graphs are I-maps of Pleft.

G0 is not an I-map of Pright
since (X  Y) I(P)
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Graphs and Distributions
• Suppose we have a distribution P for which the 

student Bayes net is an I-map
• From the student Bayes net, we can see 

examples of the conditional independencies in  
I(G) (and hence in I(P)):
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I(P)
(L  {I, D, S} | G)
(S  {D, G, L} | I)
(G  L | D, I)
(I D)
…

Intelligence

Grade SAT

Difficulty

Letter

Graphs and Distributions
• We can decompose the joint distribution for the 

student Bayes net :

• But some of these conditional probability 
distributions are quite big eg. P(S|I,D,G,L)
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Graphs and Distributions
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Using the conditional independence assumptions:

• (I D)  I(P) implies P( D | I ) = P(D)

• (L  {I, D} | G)  I(P) implies P( L | I, D, G ) = P(L | G)

• (S  {D, G, L} | I)  I(P) implies P( S | I, D, G, L ) =  
P(S | I)
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Graphs and Distributions

)|()|(),|()()(),,,,( ISPGLPDIGPDPIPSLGDIP 

• The joint distribution can be computed as a 
product of factors, one for each variable. 

• Each factor represents a conditional probability of 
the variable given its parents in the network.

• This factorization applies to any distribution P for 
which Gstudent is an I-Map.
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Graphs and Distributions
The chain rule for Bayesian networks
• Let G be a Bayes net graph over the variables X1, ..., Xn. 

We say that a distribution P over the same space 
factorizes according to G if P can be expressed as a 
product

• A Bayesian network is a pair B = (G,P) where P
factorizes over G, and where P is specified as a set of 
CPDs associated with G’s nodes. The distribution is 
often annotated PB.
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Graphs and Distributions
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From Theorems 3.1 and 3.2:

G is an I-map for P ie. (Xi  NonDescendants(Xi) | 
Parents(Xi,G)

P  factorizes as:


