Bayesian Networks 3
 D-separation

D-separation

- Given a graph \mathcal{G}, we would like to "read off" independencies
- The converse is easier to think about: when does an independence statement not hold?
- Eg. when can X influence Y ?

Explaining Away

Let's take a closer look at the common effect case (also known as explaining away):

D-separation

When influence can flow from X to Y via Z, we say that the trail $X \Leftrightarrow Z \Leftrightarrow Y$ is active (otherwise it is blocked):

Causal trail:

Active if and only if Z is not observed

Evidential trail:

Common cause:

Common effect:

Active if and only if Z is not observed

Active if and only if Z is not observed

Active if and only if either Z or one of Z's descendants is observed

D-separation

All the previous cases deal with 3 node trails.
Suppose we have a longer trail:

First, ignore the arrows. We will designate that we don't care about the arrow direction by using

D-separation

For influence to flow from X_{1} to X_{n}, it needs every two-edge trail along the trail to allow influence to flow ie.
Take

Put the original arrows back in, and it must match the patterns on the right

D-separation

(Examples) Consider the trail $\mathrm{D} \rightarrow \mathrm{G} \leftarrow \mathrm{I} \rightarrow \mathrm{S}$

- If $Z=\{ \}$, the trail is not active $(D \rightarrow G \leftarrow I$ not active)
- If $Z=\{L\}$ the trail is active
- If $Z=\{\mathrm{L}, \mathrm{I}\}$ the trail is not active (I blocks the trail $\mathrm{G} \leftarrow \mathrm{I} \rightarrow \mathrm{S}$) ${ }_{9}$

D-separation Exercises

D-separation

- D-separation: Let $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$ be three sets of nodes in G. We say that X and Y are d-separated given \boldsymbol{Z}, denoted d- $\operatorname{sep}_{G}(\boldsymbol{X} ; \boldsymbol{Y} \mid \boldsymbol{Z})$, if there is no active trail between any node $X \in X$ and $Y \in \boldsymbol{Y}$ given \boldsymbol{Z}.
- Use $I(G)$ to denote the set of independencies that correspond to d-separation:

$$
I(G)=\left\{(\boldsymbol{X} \perp \boldsymbol{Y} \mid \boldsymbol{Z}): \operatorname{d-sep}_{G}(\boldsymbol{X} ; \boldsymbol{Y} \mid \boldsymbol{Z})\right\}
$$

- This set is also called the set of global Markov independencies

D-separation Recipe

- To determine if $(X \perp Y \mid E)$, ignore the directions of the arrows, find all paths between X and Y
- Now pay attention to the arrows. Determine if the paths are blocked according to the 3 cases
- If all the paths are blocked, X and Y are dseparated given E
- Which means they are conditionally independent given E

