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Bayesian Networks 4
I-Equivalence, Distributions to 

Graphs
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Soundness and Completeness

For d-separation, we would like:
1) Soundness: i.e. D-separation in Bayesian Network G

guarantees conditional independence in distribution P
2) Completeness: i.e. D-separation in Bayesian 

Network G detects all possible independences in 
distribution P

Let’s find out if both are true.
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Soundness and Completeness

For d-separation, we would like:
1) Soundness: i.e. D-separation in Bayesian Network G

guarantees conditional independence in distribution P

True:  see proof in Section 4.5.1.1
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Soundness and Completeness

For d-separation, we would like:
1) Soundness: i.e. D-separation in Bayesian Network G

guarantees conditional independence in distribution P

2) Completeness: i.e. D-separation in Bayesian 
Network G detects all possible independences in 
distribution P*

*Not completely true
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D-separation
• Some independencies cannot be read off from the graph 

structure
• There may be additional (conditional) independencies in 

the graph that are not detected by d-separation
• (Example below): A is really independent of B after 

inspecting the Conditional Probability Tables

A B A B P(B|A)
false false 0.4
false true 0.6
true false 0.4
true true 0.6
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Soundness and Completeness

For d-separation, we would like:
1) Soundness: i.e. D-separation in Bayesian Network G

guarantees conditional independence in distribution P

2) Completeness: i.e. D-separation in Bayesian 
Network G detects all possible independences in 
distribution P*

*True for the most part. Cases that violate these are rare and slight 
perturbations to the CPDs will eliminate these cases
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I-Equivalence
Very different BN structures can actually encode 
the same set of conditional independence 
assertions eg. the three structures below encode 
(X  Y | Z) :

X Z Y

X Z Y

X Z Y
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Two graph structures K1 and K2 over X are I-
equivalent if I(K1) = I(K2). 

I-Equivalence

I-equivalence of two graphs implies:
• Any distribution P that can be factorized 

over one of these graphs can be factorized 
over other

• P can be associated with either graph
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I-Equivalence

• Suppose we know that X and Y are 
correlated in the distrubtion P(X,Y)

• We don’t know if the correct structure is:
X Y

X Y

Or
This has big implications for 
inferring causality! We’ll 
cover this later in the course 
if we have time
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I-Equivalence
The skeleton of a Bayesian network graph G over 
X is an undirected graph over X that contains 
an edge {X,Y} for every edge (X,Y) in G

V

W

X

Y

Z V

W

X

Y

Z

These two BNs have the same skeleton
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I-Equivalence

• If two networks have a common skeleton, then 
the set of trails between two variables is the 
same in both networks

• But...having the same trails is not enough for I-
equivalence eg.

X Z Y

X Z Y

X Z Y

X Z YNot I-equivalent to:
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I-Equivalence

Theorem 3.7: Let G1 and G2 be two graphs 
over X. If G1 and G2 have the same 
skeleton and the same set of v-structures 
then they are I-equivalent.
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I-Equivalence

But there are graphs that are I-equivalent but do 
not have the same set of v-structures 

• eg. two complete (fully-connected) graphs have 
the same skeleton but not the same v-structures.
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A B

C D

Can we provide a stronger condition that 
corresponds to I-Equivalence?

A B

C D

I-Equivalence
A v-structure X→Z←Y is an immorality if there is 

no direct edge between X and Y. If there is such 
an edge, it is called a covering edge for the v-
structure.

Let G1 and G2 be two graphs over X. Then G1 and 
G2 have the same skeleton and the same set of 
immoralities if and only if they are I-equivalent
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A B

C

Distributions to Graphs
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Distributions to Graphs

Given a distribution P, to what extent can we 
construct a graph G whose 
independencies  reflect those of P?
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Distributions to graphs

A graph K is a perfect map (P-map) for a 
set of independencies I if we have that 
I(K) = I. We say that K is a perfect map 
for P if I(K) = I(P).
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Distributions to Graphs

Does every distribution have a perfect map? 
No…2 common counterexamples
1. Regularity in the parameterization of the 

distribution (eg. XOR relationships) that 
cannot be captured in the graph structure

2. Independence assumptions imposed by the 
structure of BNs is not appropriate
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Distributions to Graphs
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
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),,( zyxP
xyz = false

xyz = true

Counterexample of type 1:

Exclusive (XOR)
(X  Y) I(P) but

x y z xyz P(x,y,z)
0 0 0 false 1/12
0 0 1 true 1/6
0 1 0 true 1/6
0 1 1 false 1/12
1 0 0 true 1/6
1 0 1 false 1/12
1 1 0 false 1/12
1 1 1 true 1/6

(X  Z | Y) I(P) and
(Y  Z | X) I(P)

X

Z

YOne possible minimal I-map:

XOR CPD in Z

But it is not a perfect map since (X  Z) I(P) which cannot be 
“read off” the graph by d-separation
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Distributions to Graphs

A

DB

C

Counterexample of type 2:
Suppose we have (A  C | {B,D}) I(P) and

(B  D | {A,C}) I(P)
Can we draw a P-map with just these independencies? No

This say (B  D | A) I(P) 

A

D B

C

This say (B  D) I(P) 

Can’t express these independencies with a BN. You need an undirected 
graphical model 20


