Boltzmann Machines

Neuroscience

- Donald Hebb (Long Term Potentiation): Neurons that fire together, wire together. Neurons that fire out of sync, fail to link.
- Associative memory: memories stored and retrieved as a string of associations
- Learning involves forming these associations

Boltzmann Machines

- The Hopfield network was developed to model associative memory
- Boltzmann machine is a stochastic version of a Hopfield network
- Boltzmann machine is also closely related to the Ising model from physics

Boltzmann Machines

- Fully-connected network i.e. each node is connected to all other nodes
- Node state S_{i} is binary (e.g. 0 for "off" and 1 for "on")
- Weight $w_{i j}$ between node i and node j. The weight is symmetric i.e. $w_{i j}=w_{j i}$

Think of the weights as:

- Excitatory constraints (node i is similar to node j) if positive
- Inhibitory constraints (node i is not similar to node j) if negative

[^0]
Boltzmann Machines

Used to solve two different problems:

1. Search problem: weights are fixed, need to find values of the states that minimize the "energy" of the whole system
2. Learning problem: given training data, learn the weights

The Search Problem

- Example use case: fix a corrupted or partially hidden image
- Use a Boltzmann machine trained on images of 3

The Search Problem

- The energy of a state corresponds to how well it satisfies these constraints
- Want to figure out which of $S_{i}=0$ or $S_{i}=1$ has lower energy based on the current states of the other nodes (we call this updating the state) Bias term. Side note: some
- Input z_{i} to a node i :

$$
z_{i}=\sum_{j} s_{j} w_{i j}+b_{i}
$$

- Stochastic update for the state of node i :

$$
P\left(S_{i}=1\right)=\frac{1}{1+e^{-z_{i}}}
$$

The Search Problem

- We want to compute the total energy of the Boltzmann Machine and minimize it
- The energy of a state vector $\boldsymbol{s}=\left(s_{1}, \ldots, s_{n}\right)$ is

$$
E(\boldsymbol{s})=-\sum_{i} s_{i} b_{i}-\sum_{i<j} s_{i} s_{j} w_{i j}
$$

- Probability of a state vector is:

$$
P(\boldsymbol{s})=\frac{e^{-E(\boldsymbol{s})}}{\sum_{\boldsymbol{s}^{\prime}} e^{-E\left(\boldsymbol{s}^{\prime}\right)}}=\frac{1}{Z} e^{-\left(-\sum_{i} s_{i} b_{i}-\sum_{i<j} s_{i} s_{j} w_{i j}\right)}
$$

The Search Problem

- If you update the states sequentially in any order not dependent on their total inputs, you get to an equilibrium
- Relative probability of two global states \boldsymbol{s} and \boldsymbol{s}^{\prime} follows a Boltzmann distribution:

$$
\frac{p_{s}}{p_{s^{\prime}}}=e^{-\left(E_{s}-E_{s^{\prime}}\right) / T}
$$

- Note: because the update is stochastic, you can "jump" out of local minima

The Search Problem

- Can improve search with simulated annealing

$$
P\left(S_{i}=1\right)=\frac{1}{1+e^{-z_{i} / T}}
$$

- Temperature parameter T starts large and is reduced (annealed) over time
- Higher temperature: more likely to go to a higher energy state (gets you out of local minima), can nudge you to a global optimum
- Lower temperature: favors low energy states and converges faster

Learning

During learning, you can have hidden states (H) and visible states (V)
$P(\boldsymbol{V})=\sum_{\boldsymbol{H}} P(\boldsymbol{H}, \boldsymbol{V})=\frac{1}{Z} \sum_{\boldsymbol{H}} e^{-E(\boldsymbol{H}, \boldsymbol{V}) / T}=\frac{\sum_{H} e^{-E(\boldsymbol{H}, \boldsymbol{V}) / T}}{\sum_{H} \sum_{V} e^{-E(\boldsymbol{H}, \boldsymbol{V}) / T}}$
Where $E(\boldsymbol{H}, \boldsymbol{V})=-\sum_{i} s_{i} b_{i}-\sum_{i<j} s_{i} s_{j} w_{i j}$

The s_{i} notation here means take the i th node from the joint vector of hidden and visible nodes (H, V)

Learning

We distinguish between $P_{\text {data }}(h, v)$ and $P_{\text {model }}(v)$.

Data-dependent term
$P_{\text {data }}(\boldsymbol{h}, \boldsymbol{v})=P(\boldsymbol{h} \mid \boldsymbol{v}) P_{\text {data }}(\boldsymbol{v})$
where $P_{\text {data }}(v)=\frac{1}{N} \sum_{k} \delta\left(v-\boldsymbol{v}^{k}\right)$

This is the empirical
distribution. The δ symbol is a
Dirac delta meaning $\delta(v-$
$\left.v^{k}\right)=1$ if $\left(v=v^{k}\right)$ and 0
otherwise.

Learning

To train, you minimize D:

$$
D=\sum_{v} P_{\text {model }}(\boldsymbol{v}) \log \frac{P_{\text {data }}(\boldsymbol{h}, \boldsymbol{v})}{P_{\text {model }}(\boldsymbol{v})}
$$

You can minimize this with gradient descent using the gradient update:

$$
\frac{\partial D}{\partial w_{i j}}=-\frac{1}{T}\left(E_{P_{\text {data }}(\boldsymbol{h}, \boldsymbol{v})}\left[s_{i} s_{j}\right]-E_{P_{\text {model }}(\boldsymbol{v})}\left[s_{i} s_{j}\right]\right)
$$

Note: Both these probability distributions must be measured at equilibrium

Learning

(From Hinton's Coursera notes Lecture 12.1, Slide 7)
A learning algorithm (from Hinton and Sejnowski (1983)

Computing $E_{P_{\text {data }}(\boldsymbol{h}, v)}\left[s_{i} s_{j}\right]$

- Fix visible nodes to their values from the training vector
- Set hidden nodes to random states
- Update hidden nodes one at a time until equilibrium reached at $T=1$.
- Sample $s_{i} s_{j}$ for every connected pair of nodes
- Repeat for all training data vectors and average

Note: this algorithm is very old and inefficient. Over time, researchers have developed more efficient methods

Learning

Exact minimization is intractable

- Computing $E_{P_{\text {data }}(h, v)}\left[s_{i} s_{j}\right]$ is exponential in the number of hidden units
- Computing $E_{P_{\text {model }}(v)}\left[s_{i} s_{j}\right]$ is exponential in the number of hidden and visible units.

Convexity

- No hidden units: the minimization of D is concave and gradient descent converges to a global minimum
- Has hidden units: the minimization of D is non-concave, gets stuck in local minima

Restricted Boltzmann Machines

RBMs (Smolensky 1986) restrict connectivity to a bipartite graph to make inference and learning easier:

- Only one layer of hidden states
- No visible-visible state edges
- No hidden-hidden state edges

Restricted Boltzmann Machines

- Makes hidden nodes independent of each other given visible nodes
- Allows parallel computation of hidden nodes
- Reaches equilibrium in one step when visible units clamped

$$
P\left(H_{j}=1\right)=\frac{1}{1+e^{-b_{j}-\sum_{i \in V} v_{i} w_{i j}}}
$$

- Can quickly compute $E_{P_{\text {data }}(\boldsymbol{h}, \boldsymbol{v})}\left[v_{i} h_{j}\right]$

Restricted Boltzmann Machines

Many efficient learning algorithms based on MCMC have been proposed over the years eg.

- Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In Machine Learning: Proceedings of the Twenty-First International Conference, (pp. 1033-1040).
- Carreira-Perpiñán, M. A. and Hinton, G. (2005). On contrastive divergence learning. Artificial Intelligence and Statistics.
- Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56(1), 71-113.

Restricted Boltzmann Machines

- RBMs can be stacked on top of each other
- First layer: train a RBM on training data (visible nodes)
- Second layer: take hidden layer from first RBM and treat like visible layer for training $2^{\text {nd }}$ RBM and so on...
- Final step uses supervised learning (e.g. backprop) to fine tune the network

Restricted Boltzmann Machines

What does this greedy, layer-wise training do?

- Effectively pre-training each layer
- RBM is a generative model that is trained in an unsupervised manner
- Instead of random weight initialization, RBM initializes them in a more informative way
- Leads to better learned representations

Restricted Boltzmann Machines

- Past attempts at building deep neural networks failed due to the vanishing gradient problem
- Stacked RBMs (trained with Contrastive Divergence) did not experience vanishing gradients and were fast to train
- Lead to some of the earliest deep architectures (e.g. Deep Belief Nets, Deep Boltzmann Machines)

Resources

- Hinton, G. E. and Sejnowski, T. J. (1983). Optimal Perceptual Inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 448-453).
- Hinton, G. E. and Sejnowski, T. J. (1983). Analyzing Cooperative Computation. In Proceedings of the $5^{\text {th }}$ Annual Conference of the Cognitive Science Society.
- Hinton's Boltzmann Machines Coursera lecture (https://www.youtube.com/watch?v=MMBX--6 hA4)
- Hinton's Restricted Boltzmann Machine Coursera lecture (https://www.youtube.com/watch?v=JvF3gninXi8\&index=57\&list=PL oRI3Ht4JOcdU872GhiYWf6jwrk_SNhz9)
- Boltzmann Machines notes by Geoff Hinton (https://www.cs.toronto.edu/~hinton/csc321/readings/boltz321.pdf)
- Chapter 14 of Rojas' book on Neural Networks (https://page.mi.fuberlin.de/rojas/neural/chapter/K14.pdf)

[^0]: w_{23} / w_{32}

