Boltzmann Machines

1

Neuroscience

- Donald Hebb (Long Term Potentiation): Neurons that fire together, wire together. Neurons that fire out of sync, fail to link.
- Associative memory: memories stored and retrieved as a string of associations
- Learning involves forming these associations

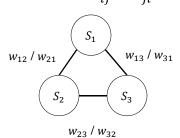
Boltzmann Machines

- The Hopfield network was developed to model associative memory
- Boltzmann machine is a stochastic version of a Hopfield network
- Boltzmann machine is also closely related to the Ising model from physics

3

Boltzmann Machines

- Fully-connected network i.e. each node is connected to all other nodes
- Node state S_i is binary (e.g. 0 for "off" and 1 for "on")
- Weight w_{ij} between node i and node j. The weight is symmetric i.e. $w_{ij} = w_{ii}$



Think of the weights as:

- Excitatory constraints (node i is similar to node j) if positive
- Inhibitory constraints (node i is not similar to node j) if negative

Boltzmann Machines

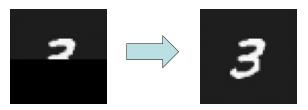
Used to solve two different problems:

- Search problem: weights are fixed, need to find values of the states that minimize the "energy" of the whole system
- 2. Learning problem: given training data, learn the weights

Ę

The Search Problem

- Example use case: fix a corrupted or partially hidden image
- Use a Boltzmann machine trained on images of 3



The Search Problem

- The energy of a state corresponds to how well it satisfies these constraints
- Want to figure out which of $S_i = 0$ or $S_i = 1$ has lower energy based on the current states of the other nodes (we call this updating the state) Bias term. Side note: some
- Input z_i to a node i:

$$i$$
:
$$z_i = \sum_j s_j w_{ij} + b_i$$
papers call this a threshold $\theta_i = -b_i$

$$z_i = \sum_j s_j w_{ij} + b_i$$

Stochastic update for the state of node *i*:

$$P(S_i = 1) = \frac{1}{1 + e^{-z_i}}$$

7

The Search Problem

- · We want to compute the total energy of the Boltzmann Machine and minimize it
- The energy of a state vector $\mathbf{s} = (s_1, ..., s_n)$ is

$$E(\mathbf{s}) = -\sum_{i} s_i b_i - \sum_{i < j} s_i s_j w_{ij}$$

• Probability of a state vector is:

$$P(s) = \frac{e^{-E(s)}}{\sum_{s'} e^{-E(s')}} = \frac{1}{Z} e^{-(-\sum_{i} s_{i} b_{i} - \sum_{i < j} s_{i} s_{j} w_{ij})}$$

The Search Problem

- If you update the states sequentially in any order not dependent on their total inputs, you get to an equilibrium
- Relative probability of two global states
 s and s' follows a Boltzmann distribution:

$$\frac{p_s}{p_{s'}} = e^{-(E_s - E_{s'})/T}$$

 Note: because the update is stochastic, you can "jump" out of local minima

(

The Search Problem

· Can improve search with simulated annealing

$$P(S_i = 1) = \frac{1}{1 + e^{-z_i/T}}$$

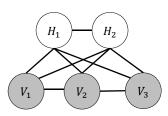
- Temperature parameter T starts large and is reduced (annealed) over time
 - Higher temperature: more likely to go to a higher energy state (gets you out of local minima), can nudge you to a global optimum
 - Lower temperature: favors low energy states and converges faster

Learning

During learning, you can have hidden states (\mathbf{H}) and visible states (\mathbf{V})

$$P(V) = \sum_{H} P(H, V) = \frac{1}{Z} \sum_{H} e^{-E(H, V)/T} = \frac{\sum_{H} e^{-E(H, V)/T}}{\sum_{H} \sum_{V} e^{-E(H, V)/T}}$$

Where $E(\mathbf{H}, \mathbf{V}) = -\sum_{i} s_i b_i - \sum_{i < j} s_i s_j w_{ij}$



The s_i notation here means take the ith node from the joint vector of hidden and visible nodes (H, V)

11

Learning

We distinguish between $P_{data}(h, v)$ and $P_{model}(v)$.

Data-dependent term

$$P_{data}(\boldsymbol{h}, \boldsymbol{v}) = P(\boldsymbol{h}|\boldsymbol{v})P_{data}(\boldsymbol{v})$$

where
$$P_{data}(v) = \frac{1}{N} \sum_{k} \delta(v - v^{k})$$

This is the empirical distribution. The δ symbol is a Dirac delta meaning $\delta(v-v^k)=1$ if $(v=v^k)$ and 0 otherwise.

Data-independent term

$$P_{model}(v) = \frac{1}{Z} \sum_{h} e^{-E(h,v)/T}$$

Learning

To train, you minimize D:

$$D = \sum_{v} P_{model}(v) log \frac{P_{data}(h, v)}{P_{model}(v)}$$

You can minimize this with gradient descent using the gradient update:

$$\frac{\partial D}{\partial w_{ij}} = -\frac{1}{T} (E_{P_{data}(\boldsymbol{h}, \boldsymbol{v})}[s_i s_j] - E_{P_{model}(\boldsymbol{v})}[s_i s_j])$$

Note: Both these probability distributions must be measured at equilibrium

13

Learning

(From Hinton's Coursera notes Lecture 12.1, Slide 7)
A learning algorithm (from Hinton and Sejnowski (1983)

Computing $E_{P_{data}(\boldsymbol{h},\boldsymbol{v})}[s_i s_j]$

- Fix visible nodes to their values from the training vector
- Set hidden nodes to random states
- Update hidden nodes one at a time until equilibrium reached at T = 1.
- Sample s_is_j for every connected pair of nodes
- Repeat for all training data vectors and average

Computing $E_{P_{model}(v)}[s_i s_j]$

- · Set all nodes to random states
- Update nodes one at a time until equilibrium reached at T = 1.
- Sample s_is_j for every connected pair of nodes
- Repeat many times and average

Note: this algorithm is very old and inefficient. Over time, researchers have developed more efficient methods

Learning

Exact minimization is intractable

- Computing $E_{P_{data}(\boldsymbol{h},\boldsymbol{v})}[s_is_j]$ is exponential in the number of hidden units
- Computing $E_{P_{model}(v)}[s_i s_j]$ is exponential in the number of hidden and visible units.

Convexity

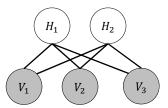
- No hidden units: the minimization of D is concave and gradient descent converges to a global minimum
- Has hidden units: the minimization of D is non-concave, gets stuck in local minima

15

Restricted Boltzmann Machines

RBMs (Smolensky 1986) restrict connectivity to a bipartite graph to make inference and learning easier:

- · Only one layer of hidden states
- No visible-visible state edges
- No hidden-hidden state edges



Restricted Boltzmann Machines

- Makes hidden nodes independent of each other given visible nodes
- Allows parallel computation of hidden nodes
- Reaches equilibrium in one step when visible units clamped

$$P(H_j = 1) = \frac{1}{1 + e^{-b_j - \sum_{i \in V} v_i w_{ij}}}$$

• Can quickly compute $E_{P_{data}(\pmb{h},\pmb{v})}[v_ih_j]$

17

Restricted Boltzmann Machines

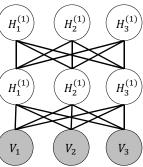
Many efficient learning algorithms based on MCMC have been proposed over the years eg.

- Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the likelihood gradient. In Machine Learning: Proceedings of the Twenty-First International Conference, (pp. 1033-1040).
- Carreira-Perpiñán, M. A. and Hinton, G. (2005). On contrastive divergence learning. *Artificial Intelligence and Statistics*.
- Neal, R. M. (1992). Connectionist learning of belief networks. Artificial Intelligence, 56(1), 71-113.

Restricted Boltzmann Machines

- · RBMs can be stacked on top of each other
- First layer: train a RBM on training data (visible nodes)
- Second layer: take hidden layer from first RBM and treat like visible layer for training 2nd RBM and so on...

 Final step uses supervised learning (e.g. backprop) to fine tune the network



19

Restricted Boltzmann Machines

What does this greedy, layer-wise training do?

- Effectively pre-training each layer
- RBM is a generative model that is trained in an unsupervised manner
- Instead of random weight initialization, RBM initializes them in a more informative way
- Leads to better learned representations

Restricted Boltzmann Machines

- Past attempts at building deep neural networks failed due to the vanishing gradient problem
- Stacked RBMs (trained with Contrastive Divergence) did not experience vanishing gradients and were fast to train
- Lead to some of the earliest deep architectures (e.g. Deep Belief Nets, Deep Boltzmann Machines)

21

Resources

- Hinton, G. E. and Sejnowski, T. J. (1983). Optimal Perceptual Inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (pp. 448-453).
- Hinton, G. E. and Sejnowski, T. J. (1983). Analyzing Cooperative Computation. In Proceedings of the 5th Annual Conference of the Cognitive Science Society.
- Hinton's Boltzmann Machines Coursera lecture (https://www.youtube.com/watch?v=MMBX--6 hA4)
- Hinton's Restricted Boltzmann Machine Coursera lecture (https://www.youtube.com/watch?v=JvF3gninXi8&index=57&list=PL oRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9)
- Boltzmann Machines notes by Geoff Hinton (https://www.cs.toronto.edu/~hinton/csc321/readings/boltz321.pdf)
- Chapter 14 of Rojas' book on Neural Networks (https://page.mi.fu-berlin.de/rojas/neural/chapter/K14.pdf)