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Boltzmann Machines
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Neuroscience

• Donald Hebb (Long Term Potentiation): 
Neurons that fire together, wire together. 
Neurons that fire out of sync, fail to link.

• Associative memory: memories stored and 
retrieved as a string of associations

• Learning involves forming these 
associations
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Boltzmann Machines

• The Hopfield network was developed to 
model associative memory

• Boltzmann machine is a stochastic version 
of  a Hopfield network

• Boltzmann machine is also closely related 
to the Ising model from physics
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Boltzmann Machines
• Fully-connected network i.e. each node is connected to 

all other nodes
• Node state is binary (e.g. 0 for “off” and 1 for “on”)
• Weight between node and node . The weight is 

symmetric i.e. 
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Think of the weights as:
• Excitatory constraints (node i

is similar to node j) if positive 
• Inhibitory constraints (node i

is not similar to node j) if 
negative
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Boltzmann Machines

Used to solve two different problems:
1. Search problem: weights are fixed, need 

to find values of the states that minimize 
the “energy” of the whole system 

2. Learning problem: given training data, 
learn the weights
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The Search Problem

• Example use case: fix a corrupted or 
partially hidden image

• Use a Boltzmann machine trained on 
images of 3 
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The Search Problem
• The energy of a state corresponds to how well it satisfies 

these constraints
• Want to figure out which of 0 or = 1 has lower 

energy based on the current states of the other nodes 
(we call this updating the state)

• Input to a node : 

• Stochastic update for the state of node : 

1
1
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Bias term. Side note: some 
papers call this a threshold 

The Search Problem

• We want to compute the total energy of the 
Boltzmann Machine and minimize it

• The energy of a state vector , … , is

• Probability of a state vector is:

∑
1 ∑ ∑

8



3

The Search Problem

• If you update the states sequentially in any 
order not dependent on their total inputs, 
you get to an equilibrium

• Relative probability of two global states 
	and follows a Boltzmann distribution:

/

• Note: because the update is stochastic, 
you can “jump” out of local minima
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The Search Problem
• Can improve search with simulated annealing

1
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• Temperature parameter starts large and is reduced 
(annealed) over time
– Higher temperature:  more likely to go to a higher 

energy state (gets you out of local minima), can 
nudge you to a global optimum

– Lower temperature: favors low energy states and 
converges faster
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Learning
During learning, you can have hidden states ( ) and visible 
states ( )

,
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Where , ∑ ∑

The notation here means take the th node from the 
joint vector of hidden and visible nodes ,

Learning
We distinguish between , and . 
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Data-dependent term

,

where ∑

Data-independent term

1 , /

This is the empirical 
distribution. The symbol is a 
Dirac delta meaning 

1 if and 0 
otherwise.
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Learning

To train, you minimize D:

You can minimize this with gradient descent using 
the gradient update:

1
,
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,

Note: Both these probability distributions must 
be measured at equilibrium

Learning
(From Hinton’s Coursera notes Lecture 12.1, Slide 7)
A learning algorithm (from Hinton and Sejnowski (1983)
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Computing ,
• Fix visible nodes to their values from 

the training vector
• Set hidden nodes to random states
• Update hidden nodes one at a time 

until equilibrium reached at 1.	
• Sample for every connected pair 

of nodes
• Repeat for all training data vectors 

and average

Computing 
• Set all nodes to random states
• Update nodes one at a time until 

equilibrium reached at 1.	
• Sample for every connected pair 

of nodes
• Repeat many times and average

Note: this algorithm is very old and inefficient. Over time, 
researchers have developed more efficient methods

Learning
Exact minimization is intractable
• Computing , is exponential in the number 

of hidden units
• Computing is exponential in the number 

of hidden and visible units.

Convexity
• No hidden units: the minimization of D is concave and 

gradient descent converges to a global minimum
• Has hidden units: the minimization of D is non-concave, 

gets stuck in local minima
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Restricted Boltzmann Machines
RBMs (Smolensky 1986) restrict connectivity to a bipartite 
graph to make inference and learning easier:
• Only one layer of hidden states
• No visible-visible state edges
• No hidden-hidden state edges
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Restricted Boltzmann Machines

• Makes hidden nodes independent of each other 
given visible nodes

• Allows parallel computation of hidden nodes
• Reaches equilibrium in one step when visible 

units clamped

1
1

1 ∑ ∈

• Can quickly compute ,
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Restricted Boltzmann Machines
Many efficient learning algorithms based on MCMC have been 
proposed over the years eg.
• Tieleman, T. (2008). Training restricted Boltzmann machines using 

approximations to the likelihood gradient. In Machine Learning: 
Proceedings of the Twenty-First International Conference, (pp. 
1033-1040).

• Carreira-Perpiñán, M. A. and Hinton, G. (2005). On contrastive 
divergence learning. Artificial Intelligence and Statistics.

• Neal, R. M. (1992). Connectionist learning of belief networks. 
Artificial Intelligence, 56(1), 71-113.
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Restricted Boltzmann Machines
• RBMs can be stacked on top of each other
• First layer: train a RBM on training data (visible nodes)
• Second layer: take hidden layer from first RBM and treat like visible 

layer for training 2nd RBM and so on…
• Final step uses supervised learning (e.g. backprop) to fine tune the 

network
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Restricted Boltzmann Machines

What does this greedy, layer-wise training do?
• Effectively pre-training each layer
• RBM is a generative model that is trained in an 

unsupervised manner
• Instead of random weight initialization, RBM 

initializes them in a more informative way
• Leads to better learned representations
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Restricted Boltzmann Machines

• Past attempts at building deep neural networks 
failed due to the vanishing gradient problem

• Stacked RBMs (trained with Contrastive 
Divergence) did not experience vanishing 
gradients and were fast to train

• Lead to some of the earliest deep architectures 
(e.g. Deep Belief Nets, Deep Boltzmann 
Machines)
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Resources
• Hinton, G. E. and Sejnowski, T. J. (1983). Optimal Perceptual 

Inference. In Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, (pp. 448-453).

• Hinton, G. E. and Sejnowski, T. J. (1983). Analyzing Cooperative 
Computation. In Proceedings of the 5th Annual  Conference of the 
Cognitive Science Society.

• Hinton’s Boltzmann Machines Coursera lecture 
(https://www.youtube.com/watch?v=MMBX--6_hA4)

• Hinton’s Restricted Boltzmann Machine Coursera lecture 
(https://www.youtube.com/watch?v=JvF3gninXi8&index=57&list=PL
oRl3Ht4JOcdU872GhiYWf6jwrk_SNhz9)

• Boltzmann Machines notes by Geoff Hinton 
(https://www.cs.toronto.edu/~hinton/csc321/readings/boltz321.pdf)

• Chapter 14 of Rojas’ book on Neural Networks (https://page.mi.fu-
berlin.de/rojas/neural/chapter/K14.pdf) 22


