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» Using a Bayesian network to compute
probabilities is called inference

* In general, inference involves queries of the
form:

P(X | E=e)
\ E = The evidence variable(s)

X =The query variable(s) (Assume a single variable for now)
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HasPepperoni

» An example of a query would be:
P( TastesGood = true | HasPepperoni = true,
HasMushrooms = true, HasAnchovies = false)

* Note: Even though CookWashesHands is in the
Bayesian network, it is not given values in the query (ie.
they do not appear either as query variables or evidence
variables)

* They are treated as unobserved variables

CookWashesHands
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Recall that:
P(X|E=e)=aP(X,E =¢)
=a) P(X,E=eY =vy)

y

and P(X,..., X,) :I.LIP(Xi | parents(X,))

Enumeration-Ask algorithm:

Answer queries by computing sums of products of
conditional probabilities from the network 4
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Query: P( A=true | B=true )
How do you solve this? 2 steps:
1. Express it in terms of the joint probability distribution P(A, B, C)

2. Express the joint probability distribution in terms of the entries in
the CPTs of the Bayes net

5
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o Whenever you see a
conditional like P( A=true |
B=true ), use the Chain Rule:

o o P(A|B)=P(A B)/P(B)

P(A=true| B =true)
_ P(A=true, B =true)
P(B =true)
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P(A=true| B =true)
_ P(A=true, B =true)

Whenever you need to get a
subset of the variables eg.
P(B,A) from the full joint
distribution P(A,B,C), use
marginalization:

P(B =true)

P(X)=>_P(X,Y =)

> P(A=true,B=true,C =c)

B Y P(A=a,B=true,C =c)
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> P(A=true,B =true,C =c)

- > P(A=a,B=true,C =c)

To express the joint
probability distribution as the
entries in the CPTs, use:

:ﬁp(xi | Parents(X;))

i=1

z P(C =c|A=true)P(B =true| A=true)P(A=true)

D> P(C=c|A=a)P(B=true| A=a)P(A=a)
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o Take the probabilities that
don’t depend on the terms in
the summation and move

o o them outside the summation

Z P(C =c|A=true)P(B =true| A=true)P(A=true)

Y P(C=c|A=a)P(B=true| A=a)P(A=a)
P(B =true| A=true)P(A=true)> P(C =c| A=true)

ZP(B:true|A:a)P(A:a)iP(C:cM:a)
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o Simplify if possible.

P(B =true| A=true)P(A=true)> P(C =c|A=true)
> P(B=true| A:a)P(A:a)i P(C=c|A=a)

_ P(B=true| A=true)P(A=true)
Y P(B=true| A=a)P(A=a)

10
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Exact Inference in graphical models is NP-
hard

—Exponential time in worst case

Approximate inference is also NP-hard

—But this is in the worst case. In practice,
it is much more efficient
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Example #2 (Variable Elimination):
P(B)=) P(A=a)P(B|A=a)

OEOSOTO

Note: B is not instantiated with a value. We are computing the table
P(B).

If A has k values and B has k values, the number of arithmetic
operations required is O(k?)

If the chain has n nodes, computing the joint probability P(X,, ..., X.)
is O(nk?)

Naive approach required O(k") operations 12
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P(D) = ;ZBJZA) P(A)P(B| A)P(C|B)P(D|C)
= ; P(D] C)g P(C] B); P(A)P(B|A)

= |

Use dynamic programming to work from the innermost
summation outward.
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P(D)=>">>" P(A)P(B| A)P(C|B)P(D|C)
=>'P(D|C)> P(C|B)Y P(A)P(B|A)

=2 _P(DIC)),P(C|B)z(B)
Cc B \

— S P(D|C)r,(C) v1(AB)=P(A)P(B| A)
C 7,(B) =Y p1(AB)

v,(B,C)=7,(B)P(C[B)
7,(C) = v,(B.,C)

14
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Two key ideas to variable elimination:

1. Due to structure of BN, some
subexpressions in the joint only depend
on a small number of variables

2. Dynamic programming caches the
intermediate results to avoid recomputing
them exponentially many times
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