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Exact Inference: Introduction

• Using a Bayesian network to compute 
probabilities is called inference

• In general, inference involves queries of the 
form:
P( X | E=e )

X = The query variable(s) (Assume a single variable for now)

E = The evidence variable(s)
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• An example of a query would be:
P( TastesGood = true | HasPepperoni = true,  

HasMushrooms = true, HasAnchovies = false)
• Note:  Even though CookWashesHands is in the 

Bayesian network, it is not given values in the query (ie. 
they do not appear either as query variables or evidence 
variables)

• They are treated as unobserved variables

TastesGood

HasPepperoni HasMushrooms HasAnchovies CookWashesHands
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Recall that:
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Enumeration-Ask algorithm:

Answer queries by computing sums of products of 
conditional probabilities from the network
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Exact Inference: Introduction
A

B C

Query: P( A=true | B=true )

How do you solve this?  2 steps:

1. Express it in terms of the joint probability distribution P(A, B, C)

2. Express the joint probability distribution in terms of the entries in 
the CPTs of the Bayes net
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A

B C

Whenever you see a 
conditional like P( A=true | 
B=true ), use the Chain Rule: 

P( A | B) = P( A, B ) / P(B)
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A

B C

Whenever you need to get a 
subset of the variables eg. 
P(B,A) from the full joint 
distribution P(A,B,C), use 
marginalization:
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A

B C

To express the joint 
probability distribution as the 
entries in the CPTs, use:
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P A true B true C c

P A a B true C c

P C c A true P B true A true P A true

P C c A a P B true A a P A a
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A

B C

Take the probabilities that 
don’t depend on the terms in 
the summation and move 
them outside the summation
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P C c A true P B true A true P A true

P C c A a P B true A a P A a

P B true A true P A true P C c A true

P B true A a P A a P C c A a
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A

B C

Simplify if possible.
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P B true A true P A true P C c A true

P B true A a P A a P C c A a

P B true A true P A true
P B true A a P A a
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Exact Inference in graphical models is NP-
hard
– Exponential time in worst case

Approximate inference is also NP-hard
– But this is in the worst case. In practice, 

it is much more efficient
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A B C D
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• Note: B is not instantiated with a value. We are computing the table
P(B).

• If A has k values and B has k values, the number of arithmetic 
operations required is O(k2)

• If the chain has n nodes, computing the joint probability P(X1, …, Xn) 
is O(nk2)

• Naïve approach required O(kn) operations

Example #2 (Variable Elimination):
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Use dynamic programming to work from the innermost 
summation outward. 
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Two key ideas to variable elimination:

1. Due to structure of BN, some 
subexpressions in the joint only depend 
on a small number of variables

2. Dynamic programming caches the 
intermediate results to avoid recomputing 
them exponentially many times


