## Exact Inference: Variable Elimination I

## Variable Elimination

## Recall:

- Let $\boldsymbol{X}$ be a set of random variables
- A factor $\phi$ is a function from $\operatorname{Val}(X) \rightarrow \mathcal{R}$
- The set of variables $X$ is called the scope of the factor and denoted Scope[ $\phi]$

We will be manipulating factors

## Variable Elimination

Let $\boldsymbol{X}$ be a set of variables, and $\mathrm{Y} \notin \boldsymbol{X}$ a variable. Let $\phi(X, Y)$ be a factor. We define the factor marginalization of $Y$ in $\phi$, denoted $\Sigma_{Y} \phi$ to be a factor $\psi$ over $X$ such that:

$$
\psi(\boldsymbol{X})=\sum_{Y} \phi(\boldsymbol{X}, Y)
$$

This operation is also called summing out of $Y$ in $\psi$

## Variable Elimination



## Variable Elimination

In a Bayesian network:

- Summing out all variables results in a factor with value 1

In a Markov network:

- Summing out all variables in the unnormalized distribution $P_{\Phi}$ defined by the product of factors in the Markov network results in the partition function


## Variable Elimination

Recall: Let $\boldsymbol{X}, \boldsymbol{Y}$, and $\boldsymbol{Z}$ be three disjoint sets of variables, and let $\phi_{1}(X, Y)$ and $\phi_{2}(Y, Z)$ be two factors. We define the factor product $\phi_{1} \times \phi_{2}$ to be a factor $\psi . \operatorname{Val}(X, Y, Z) \rightarrow \mathscr{R}$ as follows:

$$
\psi(\boldsymbol{X}, \boldsymbol{Y}, \mathbf{Z})=\phi_{1}(\boldsymbol{X}, \boldsymbol{Y}) \phi_{2}(\boldsymbol{Y}, \mathbf{Z})
$$

## Variable Elimination

Example of a factor product:

| $\mathbf{A}$ | $\mathbf{B}$ | $\boldsymbol{\phi}_{\mathbf{1}}(\mathbf{A}, \mathbf{B})$ |
| :--- | :--- | :--- |
| 0 | 0 | 0.5 |
| 0 | 1 | 0.8 |
| 1 | 0 | 0.1 |
| 1 | 1 | 0 |
| 2 | 0 | 0.3 |
| 2 | 1 | 0.9 |$\quad$| $\mathbf{B}$ | $\mathbf{C}$ | $\boldsymbol{\phi}_{\mathbf{2}}(\mathbf{B}, \mathbf{C})$ |
| :--- | :--- | :--- |
| 0 | 0 | 0.5 |
| 0 | 1 | 0.7 |
| 1 | 0 | 0.1 |
| 1 | 1 | 0.2 |


| $\mathbf{A}$ | $\mathbf{B}$ | $\mathbf{C}$ | $\boldsymbol{\mu}(\mathbf{A}, \boldsymbol{B}, \mathbf{C})$ |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 0 | $(0.5)(0.5)=0.25$ |
| 0 | 0 | 1 | $(0.5)(0.7)=0.35$ |
| 0 | 1 | 0 | $(0.8)(0.1)=0.08$ |
| 0 | 1 | 1 | $(0.8)(0.2)=0.16$ |
| 1 | 0 | 0 | $(0.1)(0.5)=0.05$ |
| 1 | 0 | 1 | $(0.1)(0.7)=0.07$ |
| 1 | 1 | 0 | $(0)(0.1)=0$ |
| 1 | 1 | 1 | $(0)(0.2)=0$ |
| 2 | 0 | 0 | $(0.3)(0.5)=0.15$ |
| 2 | 0 | 1 | $(0.3)(0.7)=0.21$ |
| 2 | 1 | 0 | $(0.9)(0.1)=0.09$ |
| 2 | 1 | 1 | $(0.9)(0.2)=0.18^{7}$ |

## Variable Elimination

Operations over factors:

- Addition is commutative: $\sum_{X} \sum_{Y} \phi=\sum_{Y} \sum_{X} \phi$
- Multiplication is commutative: $\phi_{1} \cdot \phi_{2}=\phi_{2} \cdot \phi_{1}$
- Products are associative: $\left(\phi_{1} \cdot \phi_{2}\right) \cdot \phi_{3}=\phi_{1} \cdot\left(\phi_{2} \cdot \phi_{3}\right)$
- Exchanging summations and products:
$\left.\underset{(X \text { is not in the }}{\text { If } X} \neq \operatorname{Scope} \phi_{1}\right], \quad \sum_{X}\left(\phi_{1} \cdot \phi_{2}\right)=\phi_{1} \cdot \sum_{X} \phi_{2}$
terms of $\phi_{1}$ )
terms of $\phi_{1}$ )


## Variable Elimination

Example: $P(D)=\sum_{C} \sum_{B} \sum_{A} P(A, B, C, D)$
$=\sum_{C} \sum_{B} \sum_{A} \varphi_{A} \cdot \varphi_{B} \cdot \varphi_{C} \cdot \varphi_{D}$
$=\sum_{C} \sum_{B} \varphi_{C} \cdot \varphi_{D} \cdot \varphi_{B}\left(\sum_{A} \varphi_{A}\right)$
$=\varphi_{D} \sum_{C} \varphi_{C} \cdot\left(\sum_{B} \varphi_{B} \cdot\left(\sum_{A} \varphi_{A}\right)\right)$

## Variable Elimination

The general problem involves a sum-product inference task:

$$
\sum_{Z} \prod_{\phi \in \Phi} \phi
$$

Trick: Push in the summations as far as you can

## Variable Elimination

Procedure Sum-Product-VE(
$\Phi$, // A set of factors
$\boldsymbol{Z}, \quad / /$ Set of variables to be eliminated
< // Ordering on Z
)
Let $Z_{1}, \ldots, Z_{k}$ be an ordering of $Z$ such that
$Z_{i}<Z_{i}$ if and only if $i<j$
for $i=1, \ldots k$
$\Phi \leftarrow$ Sum-Product-Eliminate-Var $\left(\Phi, Z_{i}\right)$
$\phi^{*} \leftarrow \prod_{\phi \in \Phi} \phi$

## Variable Elimination

Procedure Sum-Product-Eliminate-Var(
$\Phi, \quad / /$ A set of factors
Z, // Variable to be eliminated
)

1. $\Phi^{\prime} \leftarrow\{\phi \in \Phi: Z \in$ Scope $[\phi]\}$
2. $\Phi^{\prime \prime} \leftarrow \Phi-\Phi \prime$
3. $\psi \leftarrow \prod_{\phi \in \Phi^{\prime}} \phi$
4. $\tau \leftarrow \sum_{Z} \psi$
5. Return $\Phi^{\prime \prime} \cup\{\tau\}$

## Variable Elimination

Let $\boldsymbol{X}$ be some set of variables, and let $\Phi$ be a set of factors such that for each $\phi \in \Phi$, Scope $[\Phi] \subseteq$ $\boldsymbol{X}$. Let $\boldsymbol{Y} \subset \boldsymbol{X}$ be a set of query variables, and let $\boldsymbol{Z}=\boldsymbol{X}-\boldsymbol{Y}$. Then for any ordering <over $\boldsymbol{Z}$, Sum-Product-VE $(\Phi, Z,<)$ returns a factor $\phi^{*}(\boldsymbol{Y})$ such that

$$
\phi^{*}(\boldsymbol{Y})=\sum_{\boldsymbol{Z}} \prod_{\phi \in \Phi} \phi
$$

## Variable Elimination

Example: compute $\mathrm{P}_{\mathcal{B}}(\mathrm{Y})$ for Bayesian network ${ }_{\mathcal{B}}$. Let:

- $\Phi=\left\{\phi_{X_{i}}\right\}_{i=1}^{n}$ where $\phi_{X_{1}}=P\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)$
- $\boldsymbol{Z}=\left\{Z_{1}, \ldots, Z_{m}\right\}=\mathcal{X}-Y$ (eliminate all nonquery variables)

Note: We can do the exact same thing on a Markov network except the final factor $\phi^{*}(Y)$ is unnormalized.

## Variable Elimination



Elimination ordering: C, D, I, H, G, S, L

1. Eliminating C :
$\Psi_{1}(C, D)=\phi_{C}(C) \cdot \phi_{D}(D, C)$
$\tau_{1}(D)=\sum_{C} \Psi_{1}(C, D)$
2. Eliminating $\mathrm{D}:$
$\Psi_{2}(G, I, D)=\phi_{G}(G, I, D) \cdot \tau_{1}(D)$
$\tau_{2}(G, I)=\sum_{D} \Psi_{2}(G, I, D)$

## Variable Elimination



Elimination ordering: C, $D, I, H, G, S, L$
5. Eliminating G :
$\Psi_{5}(G, J, L, S)=\tau_{4}(G, J) \cdot \tau_{3}(G, S) \cdot \phi_{L}(L, G)$
$\tau_{5}(J, L, S)=\sum_{G} \Psi_{5}(G, J, L, S)$
6. Eliminating S :
$\Psi_{6}(J, L, S)=\tau_{5}(J, L, S) \cdot \phi_{J}(J, L, S)$
$\tau_{6}(J, L)=\sum_{S} \Psi_{6}(J, L, S)$

## Variable Elimination



Elimination ordering: $C, D, I, H, G, S, L$
7. Eliminating L:
$\Psi_{7}(J, L)=\tau_{6}(J, L)$
$\tau_{7}(J)=\sum_{L} \Psi_{7}(J, L)$

Note: You can use any elimination ordering eg. G, $\mathrm{I}, \mathrm{S}, \mathrm{L}, \mathrm{H}, \mathrm{C}, \mathrm{D}$. This is a bad ordering because it produces factors with very large scope (see Table 9.2 pg 302)

## Variable Elimination

How do we deal with evidence?
eg. $P(J=$ true $\mid I=$ high, $H=$ false $)$ ?

Note that:
$P(J \mid I=$ high, $H=$ false $)=\frac{P(J, I=\text { high }, H=\text { false })}{P(I=\text { high, } H=\text { false })}$

## Variable Elimination

## Proposition 4.7:

Let $\mathscr{B}$ be a Bayesian network over $\boldsymbol{X}$ and $\boldsymbol{E}=\boldsymbol{e}$ an observation. Let $\boldsymbol{W}=\boldsymbol{X}-\boldsymbol{E}$. Then $P_{\mathscr{S}}(\boldsymbol{W} \mid \boldsymbol{e})$ is a Gibbs distribution defined by the factors where

$$
\begin{aligned}
& \phi_{X_{i}}= \\
& P_{\mathscr{B}}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)[\boldsymbol{E}=\boldsymbol{e}] \\
& \begin{array}{l}
\text { This is a reduced factor, meaning it is the factor with } \\
\text { entries inconsistent with E }=\text { e removed. }
\end{array}
\end{aligned}
$$

The partition function for this Gibbs distribution is $P(e)$

## Variable Elimination

Procedure Cond-Prob-VE(
$\mathcal{K}, \quad / /$ A network over $\mathcal{X}$
$\boldsymbol{Y}$, // Set of query variables
E=e // Evidence

1. $\Phi \leftarrow$ Factors parameterizing K

Replace each $\phi \in \Phi$ by $\phi[E=e]$
Select an elimination ordering <
$Z \leftarrow \mathcal{X}-\boldsymbol{Y}-\boldsymbol{E}$
$\phi^{\star} \leftarrow$ Sum-Product-VE $(\Phi,<, Z)$
$\alpha \leftarrow \sum_{\mathbf{y} \in \operatorname{Val}(\boldsymbol{Y})} \phi^{\star}(\boldsymbol{y})$
return $\alpha, \phi^{\star} \longleftarrow \quad$ Note: $\phi^{*}$ represents $P(Y, \boldsymbol{e})$ so divide $\phi^{*}$ by $\alpha$ to get $P(Y \mid e)$

## Variable Elimination

- Replace each factor $\phi$ with $\phi[\mathrm{E}=\mathrm{e}]$
- Then do variable elimination like normal
- Remember to normalize with $P(E=e)$

| Variable Elimination |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Computing: P (J, $\mathrm{l}=$ high, $\mathrm{H}=$ false $)$ |  |  |  |  |
| Step | Variable Eliminated | Factors Used | Variables Involved | New Factor |
| $1{ }^{\prime}$ | C | $\phi_{C}(\mathrm{C}), \phi_{\mathrm{D}}(\mathrm{D}, \mathrm{C})$ | C, D | $\tau_{1}{ }^{\prime}(\mathrm{D})$ |
| $2^{\prime}$ | D | $\begin{aligned} & \phi_{G}[I=h i g h](G, D), \\ & \phi_{i}[l=h i g h](), \tau_{1}{ }^{\prime}(D) \end{aligned}$ | G, D | $\tau_{2}{ }^{\prime}(\mathrm{G})$ |
| 5' | G | $\begin{aligned} & \hline \tau_{2}^{\prime}(\mathrm{G}), \phi_{\mathrm{L}}(\mathrm{~L}, \mathrm{G}), \\ & \phi_{\mathrm{H}}[\mathrm{H}=\text { false] } \mathrm{G} . \mathrm{J}) \end{aligned}$ | G, L, J | $\tau_{5}{ }^{\prime}(\mathrm{J}, \mathrm{L})$ |
| 6 | S | $\phi_{S}[1=h i g h](S), \phi_{J}(\mathrm{~J}, \mathrm{~L}, \mathrm{~S})$ | J, L, S | $\tau_{6}{ }^{\prime}(\mathrm{J}, \mathrm{L})$ |
| 7 | L | $\tau_{6}{ }^{\prime}(\mathrm{J}, \mathrm{L}), \tau_{5}{ }^{\prime}(\mathrm{J}, \mathrm{L})$ | J,L | $\tau_{7}{ }^{\prime}(\mathrm{J})$ |
| 24 |  |  |  |  |

