
1

Exact Inference: Variable
Elimination 3

1

Complexity of Variable
Elimination

2

2

Complexity

Exponential size of the factors  dominates
the complexity

• If each variable has no more than v values

• And a factor i has a scope that contains
ki variables, then the number of entries Ni

in i is: ik
i vN 

3

Complexity

• Complexity of Variable Elimination
depends on the structure of the graph

• Note: the VE algorithm does not care if the
graph is directed, undirected, or partially
directed

4

3

Complexity

• Let  be a set of factors. We define

to be the set of all variables appearing in one of
the factors in .

• We define H to be the undirected graph whose
nodes correspond to the variables in Scope[]
and where we have an edge Xi—Xj  H if and
only if there exists a factor    such that Xi, Xj

 Scope[]







][][ScopeScope

5

Complexity

(Informally) The undirected graph H introduces a
fully connected subgraph over the scope of each
factor   , and hence is the minimal I-map for
the distribution induced by 

eg.  = {1(X1,X2,X3), 2(X3,X4),2(X4,X5,X6,X7)}

X1

X2

X3 X4

X6

X5

X7

6

4

Complexity

• Proposition 9.1: Let P be a distribution defined
by multiplying the factors in  and normalizing to
define a distribution. Letting X = Scope[],

Then H is the minimal Markov network I-map
for P, and the factors  are a parameterization
of this network that defines the distribution P.








Z

P
1

)(X 



X 

Z where

7

Complexity

• For a set of factors  defined by a
Bayesian network G, in the case without
evidence, the undirected graph H is the
moralized graph of G

• The product of the factors is a normalized
distribution and the partition function is
simply 1

8

5

Complexity

When variable X is eliminated:

• Create a single factor  that contains X
and all of the variables Y with which it
appears in factors

• Eliminate X from , replacing it with a new
factor  that contains all of the variables Y
but does not contain X.

• Let X be the resulting set of factors

9

Complexity

How does the graph HX
differ from H?

• Constructing  creates edges between all
Y  Y (some were present in H, others
are fill edges, which are introduced in the
elimination step)

• Eliminating X from  to construct  has the
effect of removing X and all of its incident
edges from the graph

10

6

Complexity

C

D

G

I

S

L

J

H

D

G

I

S

L

J

H

Eliminating C

11

Complexity

G

I

S

L

J

H

Eliminating DD

G

I

S

L

J

H

G S

L

J

H

Eliminating I

Fill in edge
for new
factor
(G,S)

Every factor that appears in one of the steps in the
algorithm is reflected in the graph as a clique

12

7

Complexity

Let  be a set of factors over X = {X1, …, Xn}, and
< be an elimination ordering for some subset X
 X.

The induced graph I,< is an undirected graph over
X, where Xi and Xj are connected by an edge if
they both appear in some intermediate factor 
generated by the VE algorithm using < as an
elimination ordering

13

Complexity

C

D

G

I

S

L

J

H

The induced graph for the student
example. The edge G-S is the
only fill edge introduced.

C,D

G,I,D

G,S,I

G,J,S,L

H,G,J

D

G,I

G,S

G,J

Clique tree in the
induced graph

14

8

Complexity

Let I,< be the induced graph for a set of factors 
and some elimination ordering <. Then:

1. The scope of every factor generated during the
variable elimination process is a clique in I,<

2. Every maximal clique in I,< is the scope of
some intermediate factor in the computation.

(Proof omitted here)

15

Complexity

• The width of an induced graph is defined as the
number of nodes in the largest clique in the
graph minus 1.

• The induced width wK,< of an ordering < relative
to a graph K (directed or undirected) is defined
as the width of the graph IK,< induced by
applying VE to K using the ordering <.

• The tree-width of a graph K to be its minimal
induced width w*K = min< w(IK,<)

16

9

Complexity

The tree-width provides us a bound on the
best performance we can hope for by
applying VE to a probabilistic model that
factorizes over K

17

Finding Elimination Orderings

18

10

Finding Elimination Orderings

Bad News:
• Determining whether there exists an elimination

ordering achieving an induced width  K (for
some bound K) on a graph H is NP-complete

• Finding the optimal elimination order is NP-hard

Even worse news:
• Even if we had the optimal elimination ordering,

inference might require exponential time due to
a large induced width

19

Finding Elimination Orderings

NP-completeness? We remain unfazed!

How to find elimination orderings:

1. Graph theoretic approaches

2. Heuristic approaches

20

11

Finding Elimination Orderings

Graph-Theoretic Approaches

• Eliminate nodes such that you don’t produce fill
edges

• Use the clique tree

– Start eliminating from the leafs of the clique
tree

• What if you don’t have the clique tree?

– Use the Max-Cardinality algorithm (see pg
312 in book) on the original graph

21

Finding Elimination Orderings

• Heuristic approaches use a greedy algorithm (could be
done deterministically or stochastically)

• Requires a heuristic cost function.

• Examples of costs:

– Min-neighbors: # of neighbors

– Min-weight: domain cardinality of neighbors

– Min-fill: # of fill edges added

– Weighted min-fill: sum of weights of fill edges (weight
= domain cardinality of vertices connected to the
edge)

22

12

Finding Elimination Orderings

• Heuristics work well in practice

• Min-fill and weighted min-fill tend to work
the best

23

