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Complexity

Exponential size of the factors  dominates 
the complexity

• If each variable has no more than v values 

• And a factor i has a scope that contains 
ki variables, then the number of entries Ni

in i is:                   ik
i vN 
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Complexity

• Complexity of Variable Elimination 
depends on the structure of the graph 

• Note: the VE algorithm does not care if the 
graph is directed, undirected, or partially 
directed
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Complexity

• Let  be a set of factors. We define 

to be the set of all variables appearing in one of 
the factors in . 

• We define H to be the undirected graph whose 
nodes correspond to the variables in Scope[]
and where we have an edge Xi—Xj  H if and 
only if there exists a factor    such that Xi, Xj

 Scope[]







][][ ScopeScope
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Complexity

(Informally) The undirected graph H introduces a 
fully connected subgraph over the scope of each 
factor   , and hence is the minimal I-map for 
the distribution induced by 

eg.  = {1(X1,X2,X3), 2(X3,X4),2(X4,X5,X6,X7)}
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Complexity

• Proposition 9.1: Let P be a distribution defined 
by multiplying the factors in  and normalizing to 
define a distribution. Letting X = Scope[],

Then H is the minimal Markov network I-map 
for P, and the factors  are a parameterization 
of this network that defines the distribution P.








Z

P
1

)(X 



X 

Z where
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Complexity

• For a set of factors  defined by a 
Bayesian network G, in the case without 
evidence, the undirected graph H is the 
moralized graph of G

• The product of the factors is a normalized 
distribution and the partition function is 
simply 1
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Complexity

When variable X is eliminated:

• Create a single factor  that contains X
and all of the variables Y with which it 
appears in factors

• Eliminate X from , replacing it with a new 
factor  that contains all of the variables Y
but does not contain X.

• Let X be the resulting set of factors
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Complexity

How does the graph HX
differ from H?

• Constructing  creates edges between all 
Y  Y (some were present in H, others 
are fill edges, which are introduced in the 
elimination step)

• Eliminating X from  to construct  has the 
effect of removing X and all of its incident 
edges from the graph
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Complexity
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Complexity
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Every factor that appears in one of the steps in the 
algorithm is reflected in the graph as a clique
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Complexity

Let  be a set of factors over X = {X1, …, Xn}, and 
< be an elimination ordering for some subset X
 X. 

The induced graph I,< is an undirected graph over 
X, where Xi and Xj are connected by an edge if 
they both appear in some intermediate factor 
generated by the VE algorithm using < as an 
elimination ordering
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Complexity
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The induced graph for the student 
example. The edge G-S is the 
only fill edge introduced.
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induced graph
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Complexity

Let I,< be the induced graph for a set of factors 
and some elimination ordering <. Then:

1. The scope of every factor generated during the 
variable elimination process is a clique in I,<

2. Every maximal clique in I,< is the scope of 
some intermediate factor in the computation.

(Proof omitted here)
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Complexity

• The width of an induced graph is defined as the 
number of nodes in the largest clique in the 
graph minus 1. 

• The induced width wK,< of an ordering < relative 
to a graph K (directed or undirected) is defined 
as the width of the graph IK,< induced by 
applying VE to K using the ordering <. 

• The tree-width of a graph K to be its minimal 
induced width w*K = min< w(IK,<)
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Complexity

The tree-width provides us a bound on the 
best performance we can hope for by 
applying VE to a probabilistic model that 
factorizes over K
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Finding Elimination Orderings

18



10

Finding Elimination Orderings

Bad News:
• Determining whether there exists an elimination 

ordering achieving an induced width  K (for 
some bound K) on a graph H is NP-complete

• Finding the optimal elimination order is NP-hard

Even worse news:
• Even if we had the optimal elimination ordering, 

inference might require exponential time due to 
a large induced width
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Finding Elimination Orderings

NP-completeness? We remain unfazed!

How to find elimination orderings:

1. Graph theoretic approaches

2. Heuristic approaches
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Finding Elimination Orderings

Graph-Theoretic Approaches

• Eliminate nodes such that you don’t produce fill 
edges

• Use the clique tree 

– Start eliminating from the leafs of the clique 
tree

• What if you don’t have the clique tree?

– Use the Max-Cardinality algorithm (see pg 
312 in book) on the original graph
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Finding Elimination Orderings

• Heuristic approaches use a greedy algorithm (could be 
done deterministically or stochastically)

• Requires a heuristic cost function.

• Examples of costs:

– Min-neighbors: # of neighbors

– Min-weight: domain cardinality of neighbors

– Min-fill: # of fill edges added

– Weighted min-fill: sum of weights of fill edges (weight 
= domain cardinality of vertices connected to the 
edge) 
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Finding Elimination Orderings

• Heuristics work well in practice

• Min-fill and weighted min-fill tend to work 
the best

23


