

- Exponential size of the factors ψ dominates the complexity
- If each variable has no more than v values
- And a factor ψ_i has a scope that contains k_i variables, then the number of entries N_i in ψ_i is: N_i ≤ v^{k_i}

Complexity

2

4

- Complexity of Variable Elimination depends on the structure of the graph
- Note: the VE algorithm does not care if the graph is directed, undirected, or partially directed

• Let ϕ be a set of factors. We define $Scope[\Phi] = | Scope[\phi]$

$$bcope[\Phi] = \bigcup_{\phi \in \Phi} bcope[\phi]$$

to be the set of all variables appearing in one of the factors in Φ .

• We define \mathcal{H}_{Φ} to be the undirected graph whose nodes correspond to the variables in $Scope[\Phi]$ and where we have an edge $X_i - X_j \in \mathcal{H}_{\Phi}$ if and only if there exists a factor $\phi \in \Phi$ such that $X_i, X_j \in Scope[\phi]$

Complexity

(Informally) The undirected graph \mathcal{H}_{ϕ} introduces a fully connected subgraph over the scope of each factor $\phi \in \Phi$, and hence is the minimal I-map for the distribution induced by Φ

eg. $\Phi = \{\phi_1(X_1, X_2, X_3), \phi_2(X_3, X_4), \phi_2(X_4, X_5, X_6, X_7)\}$

X_1 X_3 X_4 X_5 X_2 X_6 X_7 6

Complexity

 Proposition 9.1: Let *P* be a distribution defined by multiplying the factors in *Φ* and normalizing to define a distribution. Letting *X* = *Scope*[*Φ*],

$$P(X) = \frac{1}{Z} \prod_{\phi \in \Phi} \phi$$
 where $Z = \sum_{X} \prod_{\phi \in \Phi} \phi$

Then \mathcal{H}_{Φ} is the minimal Markov network I-map for *P*, and the factors Φ are a parameterization of this network that defines the distribution *P*.

7

Complexity

- For a set of factors Φ defined by a Bayesian network G, in the case without evidence, the undirected graph \mathcal{H}_{Φ} is the moralized graph of G
- The product of the factors is a normalized distribution and the partition function is simply 1

When variable *X* is eliminated:

- Create a single factor ψ that contains X and all of the variables Y with which it appears in factors
- Eliminate X from ψ, replacing it with a new factor τ that contains all of the variables Y but does not contain X.

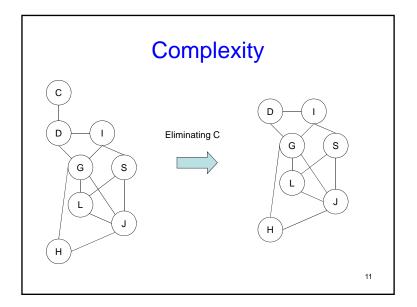
9

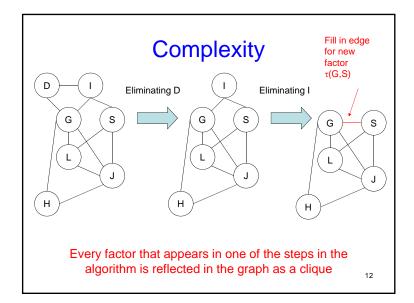
• Let Φ_{χ} be the resulting set of factors

Complexity

How does the graph $\mathcal{H}_{\!\!\!\!\!\!\!_{\Phi_X}}$ differ from $\mathcal{H}_{\!\!\!_{\Phi}}?$

- Constructing ψ creates edges between all Y ∈ Y (some were present in H_Φ, others are fill edges, which are introduced in the elimination step)
- Eliminating X from ψ to construct τ has the effect of removing X and all of its incident edges from the graph

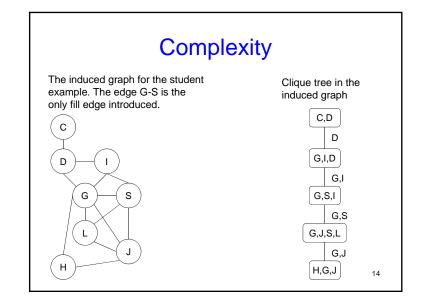




Let Φ be a set of factors over $\mathcal{X} = \{X_1, ..., X_n\}$, and < be an elimination ordering for some subset $X \subseteq \mathcal{X}$.

The induced graph $J_{\phi,<}$ is an undirected graph over \mathcal{X} , where X_i and X_j are connected by an edge if they both appear in some intermediate factor ψ generated by the VE algorithm using < as an elimination ordering

13



Complexity

- Let $I_{\Phi,<}$ be the induced graph for a set of factors Φ and some elimination ordering <. Then:
- 1. The scope of every factor generated during the variable elimination process is a clique in $I_{\Phi,<}$
- 2. Every maximal clique in $I_{\Phi,<}$ is the scope of some intermediate factor in the computation.

(Proof omitted here)

15

Complexity

- The width of an induced graph is defined as the number of nodes in the largest clique in the graph minus 1.
- The induced width $w_{\mathcal{K},<}$ of an ordering < relative to a graph \mathcal{K} (directed or undirected) is defined as the width of the graph $I_{\mathcal{K},<}$ induced by applying VE to \mathcal{K} using the ordering <.
- The tree-width of a graph *K* to be its minimal induced width *w*^{*}_K = min_< *w*(*I*_{K,<})

The tree-width provides us a bound on the best performance we can hope for by applying VE to a probabilistic model that factorizes over \mathcal{K}

Finding Elimination Orderings

Bad News:

- Determining whether there exists an elimination ordering achieving an induced width ≤ K (for some bound K) on a graph H is NP-complete
- Finding the optimal elimination order is NP-hard

Even worse news:

• Even if we had the optimal elimination ordering, inference might require exponential time due to a large induced width

19

17

Finding Elimination Orderings

NP-completeness? We remain unfazed!

How to find elimination orderings:

- 1. Graph theoretic approaches
- 2. Heuristic approaches

Finding Elimination Orderings

Graph-Theoretic Approaches

- Eliminate nodes such that you don't produce fill edges
- Use the clique tree
 - Start eliminating from the leafs of the clique tree
- What if you don't have the clique tree?
 - Use the Max-Cardinality algorithm (see pg 312 in book) on the original graph

21

Finding Elimination Orderings

- Heuristic approaches use a greedy algorithm (could be done deterministically or stochastically)
- Requires a heuristic cost function.
- Examples of costs:
 - Min-neighbors: # of neighbors
 - Min-weight: domain cardinality of neighbors
 - Min-fill: # of fill edges added
 - Weighted min-fill: sum of weights of fill edges (weight = domain cardinality of vertices connected to the edge)

22

Finding Elimination Orderings

- Heuristics work well in practice
- Min-fill and weighted min-fill tend to work the best