
1

1

Exact Inference 4: Message
Passing

Introduction

• We will cover the sum-product message
passing algorithm

• Also known as belief propagation

2

2

Introduction

• Message passing is exact when the graph has
no (undirected) loops eg.

• If there are loops, you need to use loopy belief
propagation (which is approximate)

3

A chain

A tree

Message Passing

Intuition (using a chain as an example)

• Each node maintains its current marginal ܲሺ ௜ܺሻ (also
called its belief).

• Initially, the marginal doesn’t take the influence of the
neighbors into account

• Note that a Node’s belief is affected by its neighbors

• Neighboring nodes send messages to each other

4

ܺଶଵܺ
݉ଵ⟶ଶ

݉ଶ⟶ଵ

3

Introduction

Intuition (using a chain as an example)

• Node ܺଶ receives a message ݉ଵ⟶ଶfrom Node ଵܺ

• The message tells Node ܺଶ what state Node ଵܺ thinks
Node ܺଶ should be in

• The higher the value of the message, the more likely
Node ଵܺ thinks Node ܺଶ should be in that state

• Node ܺଶ updates its belief about ܲሺܺଶሻ

5

ܺଶଵܺ
݉ଵ⟶ଶ

݉ଶ⟶ଵ

Introduction

Intuition (using a chain as an example)

• At convergence, the belief at a Node ௜ܺ is the marginal
probability ܲሺ ௜ܺሻ

• This is equivalent to a dynamic programming approach
(very efficient!)

6

ܺଶଵܺ

݉ଶ⟶ଵ

4

Introduction

What if the graphical model isn’t a chain or a
tree?

• Clump nodes into “mega-nodes” (ie.
cliques) and treat the cliques like nodes

• This is where clique trees come in

7

Clique Trees

8

5

9

Cluster Graph

In this section we are dealing with a product
over factors:




 
i

iiP


)()(
~

XX

• Normalized distribution for Bayesian networks since
factors are CPDs

• Unnormalized distribution for Gibbs distributions

10

Cluster Graph

A cluster graph U for a set of factors  over X is
an undirected graph, each of whose nodes i is
associated with a subset Ci  X.

1: C,D 2: G, I, D 3: G, S, I 5: G, J, S, L 4: H, G, J
D G, I G, S G, J

Example of a cluster graph

6

11

Cluster Graph

• Each factor  must be associated with a
cluster C, denoted (), such that Scope[]  Ci.

• Each edge between a pair of clusters Ci and Cj

is associated with a sepset Si,j  Ci  Cj.

• A cluster graph is a generalization of a clique
tree

1: C,D 2: G, I, D 3: G, S, I 5: G, J, S, L 4: H, G, J
D G, I G, S G, J

Example of a cluster graph

12

Cluster Graph

1(C,D) 2(G, I, D) 3(G, S, I)

5(G, J, S, L)

4(H, G, J)

6(J, S, L) 7: J, L

1(D) 2(G, I)

3(G, S)

4(G, J)

5(J, S, L) 6(J, L)

A new way to interpret variable elimination:
• (Recall: variable elimination defines a cluster graph)
• Factors i accept messages j from another factor j

• Factors i also send their own messages i to another
factor

7

13

Cluster Graph

Step Variable Eliminated Factors Used New Factor

1 C C(C), D(D,C) 1(D)

2 D G(G,I,D), 1(D) 2(G,I)

3 I I(I), S(S,I), 2(G,I) 3(G,S)

4 H H(H,G,J) 4(G,J)

5 G 4(G,J), 3(G,S), L(L,G) 5(J,L,S)

6 S 5(J,L,S), J(J, L, S) 6(J,L)

7 L 6(J,L) 7(J)

1(C,D) 2(G, I, D) 3(G, S, I)

5(G, J, S, L)

4(H, G, J)

6(J, S, L) 7: J, L

1(D) 2(G, I)

3(G, S)

4(G, J)

5(J, S, L) 6(J, L)

14

Cluster Graph

1(C,D) 2(G, I, D) 3(G, S, I)

5(G, J, S, L)

4(H, G, J)

6(J, S, L) 7: J, L

1(D) 2(G, I)

3(G, S)

4(G, J)

5(J, S, L) 6(J, L)

Note:
• Cluster graph produced by variable elimination is a tree
• Each original factor  is used only once to create cluster 
• Execution of variable elimination causes messages to flow

“ up”to a “root” node

8

15

Cluster Graph

• T has the running intersection property if,
whenever there is a variable X such that X  Ci

and X  Cj, then X is also in every cluster in the
(unique) path in T between Ci and Cj.

• Example: cluster tree below obeys the running
intersection property (see G in ܥଶ and ܥସ)

• Running intersection property implies sepset Si,j

= Ci  Cj.

1: C,D 2: G, I, D 3: G, S, I 5: G, J, S, L 4: H, G, J
D G, I G, S G, J

16

Cluster Graph

• Theorem 10.1: Let T be a cluster tree
induced by a variable elimination algorithm
over some set of factors . Then T
satisfies the running intersection property.

9

17

Clique Tree

• Let  be a set of factors over X. A cluster tree
over  that satisfies the running intersection
property is called a clique tree (aka junction tree
or join tree).

• In the case of a clique tree, the clusters are also
called cliques.

18

Message Passing: Sum
Product

10

19

Message Passing: Sum Product

• Assume we are given a clique tree

• Note: can use the same clique tree to
cache computations for multiple
executions of variable elimination

• Cheaper than performing each variable
elimination separately

20

Message Passing: Sum Product

1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)

D G, I G, S G, J

Example: Simplified Extended Student Clique tree

P(D|C)
P(C)

P(G|I,D) P(I)
P(S|I)

P(L|G)
P(J|L,S)

P(H|G,J)

• First step: generate a set of initial potentials i(Ci) with
each clique eg. by multiplying the initial factors

• For instance, 5(J,L,G,S) = L(L,G)  J(J,L,S)

• Suppose we have to compute P(J):

• Select a root clique that does contain J eg. C5.

11

21

Message Passing: Sum Product
1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)

12(D):
C 1(C1)

23(G,I):
D 2(C2)  12

35(G,S):
I 3(C3)  23

45(G,J):
H 4(C4)

Execute the following:

• In C1: Eliminate C by C 1(C,D). Resulting factor has
scope D. Send message 12(D) to C2

• In C2: Define 2(G,I,D) = 12(D)2(G,I,D). Eliminate D to
get a factor 23(G,I) which is sent to C3.

• In C3: Define 3(G,S,I) = 23(G,I)3(G,S,I). Eliminate I to
get a factor 35(G,S) which is sent to C5.

22

Message Passing: Sum Product
1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)

12(D):
C 1(C1)

23(G,I):
D 2(C2)  12

35(G,S):
I 3(C3)  23

45(G,J):
H 4(C4)

Execute the following:

• In C4: Eliminate H by H 4(H,G,J). Send factor 45(G,J)
to C5.

• In C5: Define 5(G,J,S,L)= 35(G,S)  45(G,J) 
5(G,J,S,L)

• Sum out G, L, and S from 5 to get P(J)

12

23

Message Passing: Sum Product

• Clique is ready when it has received all of its
incoming messages eg.

– C4 ready at the start

– C2 ready only after getting message from C1

• C1, C4, C2, C3, C5 is a legal execution ordering
for the tree rooted at C5

• C2, C1, C4, C3, C5 is not a legal execution
ordering

1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)

24

Message Passing: Sum Product

Could also define C4 as the root

• In C1: computation and message unchanged

• In C2: computation and message unchanged

• In C3: computation and message unchanged

1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)

12(D):
C 1(C1)

23(G,I):
D 2(C2)  12

35(G,S):
I 3(C3)  23

13

25

Message Passing: Sum Product

C4 as the root

• In C5: Define 5(G,J,S,L) = 35(G,S)5(G,J,S,L).
Eliminate S and L. Send out factor 54(G,J) to C4.

• In C4: Define 4(H,G,J) = 54(G,S)4(H,G,J).

• Eliminate H and G from 4(H,G,J) to get P(J)

1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)

12(D):
C 1(C1)

23(G,I):
D 2(C2)  12

35(G,S):
I 3(C3)  23

54(G,J):
 L,S 5(C5)  35

26

Message Passing: Sum Product

Clique-Tree Message Passing

1. Set initial potentials

2. Pass messages to neighboring cliques,
sending to root clique

14

27

Message Passing: Sum Product

1. Initial potentials
– Each factor ߶߳Φ is assigned to some clique
ሺ߶ሻߙ

– The initial potential of Cj is:

Ψ௝ ࢐࡯ ൌ ෑ ߶
థ:ఈ థ ୀ௝

– Since each factor is assigned to exactly one
clique, we have:

ෑ߶
థ

ൌෑΨ௝
௝

28

Message Passing: Sum Product

2. Message passing
– Definitions:

• Cr = root clique
• Nbi = indices of cliques that are neighbors of Ci

• pr(i) = upstream neighbor of i (the one on the path
to the root clique r)

– Start with the leaves of the clique tree and move
inward

– Each clique Ci (except for the root) performs a
message passing computation and sends message to
upstream neighbor Cpr(i)

15

29

Message Passing: Sum Product

Message from Ci to Cj:

 
 

 
jii i jNbk

ikiji

, }){(SC



Clique Ci multiplies incoming messages
from its neighbors (except j) with its
initial clique potential

Sums out all variables except those in
the sepset between Ci and Cj

Sends resulting factor to Cj

30

Message Passing: Sum Product

• At the root, once all messages are
received, it multiplies them with its own
initial potential

• Result is a factor called the beliefs r(Cr),
which represents




 
r

rP
C

C


)(
~

16

31

Message Passing: Sum Product

Procedure CTree-SP-Upward (
, // Set of factors
T, // Clique tree over 
, // Initial assignment of factors to cliques
Cr // Some selected root clique

)
1. Initialize-Cliques()
2. while Cr is not ready
3. Let Ci be a ready clique
4. i→pr(i) (Si,pr(i))  SP-Message(i,pr(i))
5.

6. return r





r

Nbk
rkrr

C



32

Message Passing: Sum Product
Procedure Initialize-Cliques ()

1. for each clique Ci

2. 



i

ii

jj)(:

)(


 C

Procedure SP-Message (

i, // sending clique

j // receiving clique

)

1.

2.

3. return (Si,j)





}){(

)(
jNbk

ikii

i

 C





jii SC

iji

,

)()(, CS 

