Exact Inference 4: Message
Passing

Introduction

* We will cover the sum-product message
passing algorithm
» Also known as belief propagation




Introduction

* Message passing is exact when the graph has
no (undirected) loops eg.

OO

A chain
A tree

« If there are loops, you need to use loopy belief
propagation (which is approximate)

Message Passing

Intuition (using a chain as an example)

« Each node maintains its current marginal P(X;) (also
called its belief).

« Initially, the marginal doesn’t take the influence of the
neighbors into account

» Note that a Node’s belief is affected by its neighbors
* Neighboring nodes send messages to each other

° — °
my—1




Introduction

Intuition (using a chain as an example)
* Node X, receives a message m,_,,from Node X,

» The message tells Node X, what state Node X, thinks
Node X, should be in

» The higher the value of the message, the more likely
Node X; thinks Node X, should be in that state

* Node X, updates its belief about P(X5;)

mi_2
ma—1

Introduction

Intuition (using a chain as an example)

» At convergence, the belief at a Node X; is the marginal
probability P(X;)

» This is equivalent to a dynamic programming approach
(very efficient!)

° my_q e




Introduction

What if the graphical model isn’t a chain or a
tree?

* Clump nodes into “mega-nodes” (ie.
cliques) and treat the cliques like nodes

» This is where clique trees come in

Clique Trees




Cluster Graph

In this section we are dealing with a product
over factors:

P, (X) =T T4 (X)

] @, €D

* Normalized distribution for Bayesian networks since
factors are CPDs
* Unnormalized distribution for Gibbs distributions

Cluster Graph

A cluster graph ‘U for a set of factors ® over X'is

an undirected graph, each of whose nodes i is
associated with a subset C, c X.

Example of a cluster graph

, G, J
(1:cD ]i[Z:G,I,D]i[S:G,S,IJE[S:G,J,S,L]—“:H,G,J ]




Cluster Graph

» Each factor ¢ e® must be associated with a
cluster C, denoted a/(¢), such that Scope[¢] = C..

+ Each edge between a pair of clusters C; and C;
is associated with a sepset S;; < C;n C;.

» A cluster graph is a generalization of a clique
tree

Example of a cluster graph

[1:cD Ji[zze,|,D]G'—|[3:G,s,|]i[s:G,J,s,L]G'—JU:H,G,J )

1

Cluster Graph

14(D) (G, 1)
(wi©D) J={vaG,1.0) J={wiG 51 |
| @9
w(J, S, L) 6(J, L)
Cj—m S0 s urit
(G, J)

\v4(H, G, J)

A new way to interpret variable elimination:

* (Recall: variable elimination defines a cluster graph)

* Factors y; accept messages t; from another factor v

+ Factors y; also send their own messages t;to another
factor




Cluster Graph

4(D) (G, 1)
(w(€D) f={vae.1D) J—{w(e.s.1)
G S
l ol )( s, L) T6(J, L)
VG50 | —5 o 5. 1) ]—[\w JL
1| wG )
\V4(H1 G! J)
Step Variable Eliminated Factors Used New Factor
1 c 4c(C), $o(D,C) 74(D)
2 D 46(G.1.D), (D) %(G.I)
3 | &), 9s(S.1), To(G,1) 73(G,S)
4 H ou(H,G,J) 1,(G,J)
5 G 1,(GJ), 5(G.S), ¢.(L,G) 15(J,L,S)
6 s (J,LS), ¢,(J,L,S) 6(J,L)
7 L (L) () "
Cluster Graph
14(D) (G, 1)
(wi©D) J={vaG,1.0) J={wiG 51 |
| @9
w(J, S, L) 6(J, L)
s JE—MJ S.0 J={wsoL
(G, J) 1

Note:

+ Cluster graph produced by variable elimination is a tree

\v4(H, G,J)

« Each original factor ¢ is used only once to create cluster y
« Execution of variable elimination causes messages to flow
up”to a “root” node




Cluster Graph

» T has the running intersection property if,
whenever there is a variable X such that X € C,
and X e Cj, then X is also in every cluster in the
(unique) path in T between C; and C..

« Example: cluster tree below obeys the running
intersection property (see G in C, and C,)

D G, , G, J
(1:cD ]—[2:G,|,D]—[3:G,s,|]i[sze,J,s,L]—[mH,G,J ]

* Running intersection property implies sepset S;;
=Cn G

15

Cluster Graph

« Theorem 10.1: Let T be a cluster tree
induced by a variable elimination algorithm
over some set of factors ®. Then T
satisfies the running intersection property.




Clique Tree

* Let @ be a set of factors over X. A cluster tree
over @ that satisfies the running intersection
property is called a clique tree (aka junction tree
or join tree).

* In the case of a clique tree, the clusters are also
called cliques.

Message Passing: Sum
Product




Message Passing: Sum Product

« Assume we are given a clique tree

* Note: can use the same clique tree to
cache computations for multiple
executions of variable elimination

» Cheaper than performing each variable
elimination separately

Message Passing: Sum Product

Example: Simplified Extended Student Clique tree

D G, I G,S G,J
(1D {210 }—{3@s)}—50GJs1}{4MHc]
AN

P(DIC) P(G|I,D) P(1) P(L|G) P(H|G,J)
P(C) P(S|I) PUIL,S)

+ First step: generate a set of initial potentials ;(C;) with
each clique eg. by multiplying the initial factors

+ Forinstance, y5(J,L,G,S) = ¢, (L,G) - ¢,(J,L,S)

» Suppose we have to compute P(J):
20

+ Select a root clique that does contain J eg. Cs.

10



Message Passing: Sum Product

(1:(c.D)

2:(G,1,0) {3 (6,8 1) {5451 k{4MHc]

31.,2(D):
ZC v4(Cy)

33.,5(G,S):
2 w3(Cg) x 8,45

84,5(G,J):
24 Wa(Cy)

8,3(G,1):
2p W2(Cy) x 84,5

Execute the following:

In C,: Eliminate C by > v,(C,D). Resulting factor has
scope D. Send message §,_,,(D) to C,

In C,: Define B,(G,I,D) = 3,_,,(D)-y,(G,I,D). Eliminate D to
get a factor §,_,5(G,l) which is sent to Cs.

In C;: Define B5(G,S,I) = 5,_,3(G,1)y5(G,S,I). Eliminate | to
get a factor 6;5_,5(G,S) which is sent to Cs. 21

Message Passing: Sum Product

(1:(c.D)

2:(G,1,0) {36, 8,1) {5451 k{4Hc]

33.,5(G,S):
2 w3(Cg) x 8,45

84,5(G,J):
24 Wa(Cy)

8,3(G,1):
2p W2(Cy) x 81,5

Execute the following:

In C,: Eliminate H by 2., w,(H,G,J). Send factor §,_,5(G,J)
to Cs.

WS(G’J’SvL)

Sum out G, L, and S from B to get P(J)

22

11



Message Passing: Sum Product
(1) {2210 }—{3@sn)}—{50G s }F{4MHc]

» Clique is ready when it has received all of its
incoming messages eg.
— C, ready at the start
— C, ready only after getting message from C,
+ C,,C,, C,, C;, Csis a legal execution ordering
for the tree rooted at C;

- C,, C,, C4, C;, Csis not a legal execution

ordering
23

Message Passing: Sum Product
(1D {2210 }——{3@sn)}—{50G4s0}{4MHc]

84_,2(D): 8y,3(Gu): 83,5(G,S):
e w1(Cy) 2p W2(Cy) x 84,5 2 W3(Cs) x 85,3

Could also define C, as the root
* In C,: computation and message unchanged
* In C,: computation and message unchanged

* In C5: computation and message unchanged

24

12



Message Passing: Sum Product

(1D {2210 }—{3@s)}—{51G4s1}{40H0

)

31,,2(D): 85,3(Gl): 33.,5(G,S): 35.,4(G,J):
2c w4(Cy) 2p W2(Cy) x 84,5 2 W3(Cs) x 85,3 2 Ls V5(Cs) x 63,5

C, as the root

* In C4: Define B5(G,J,S,L) = 85 ,5(G,S)-w5(G,J,S,L).
Eliminate S and L. Send out factor 65_,,(G,J) to C,.

* In C,: Define B4(H,G,J) = 85_,4(G,S)y,(H,G,J).
+ Eliminate H and G from B,(H,G,J) to get P(J)

25

Message Passing: Sum Product

Clique-Tree Message Passing
1. Set initial potentials

2. Pass messages to neighboring cliques,
sending to root clique

26

13



Message Passing: Sum Product

1. Initial potentials
— Each factor ¢e® is assigned to some clique

a (o)
— The initial potential of C, is:
¥(¢y) = 1_[ ¢
p:a(p)=j
— Since each factor is assigned to exactly one
clique, we have:
[lo=]]v
¢ j

27

Message Passing: Sum Product

2. Message passing
— Definitions:
» C, = root clique
* Nb; = indices of cliques that are neighbors of C,

* p/(i) = upstream neighbor of i (the one on the path
to the root clique r)
— Start with the leaves of the clique tree and move
inward
— Each clique C, (except for the root) performs a
message passing computation and sends message to
upstream neighbor C,;

28

14



Message Passing: Sum Product

Message from C; to C;:

5i—>j: Z V- Hé‘k—ﬂ
Ci

=Sij ke(Nb —{j})

\
Clique C; multiplies incoming messages

from its neighbors (except j) with its
initial clique potential

Sums out all variables except those in
the sepset between C; and C,

Sends resulting factor to C;
29

Message Passing: Sum Product

At the root, once all messages are
received, it multiplies them with its own
initial potential

 Result is a factor called the beliefs 3,(C,),
which represents

P.C)=> T]¢
X-C, ¢

30

15



Message Passing: Sum Product

Procedure CTree-SP-Upward (

@, /I Set of factors

T, /I Clique tree over ®
, /I Initial assignment of factors to cliques
. /I Some selected root clique

(08
C
)
Initialize-Cliques()
while C, is not ready
Let C; be a ready clique

o=

ﬂr ¢ l//r' | Ié‘kar
keNbc,
6. return B,

Sipr(i) (Sipry) <~ SP-Message(i,p.(i))

31

Message Passing: Sum Product

Procedure Initialize-Cliques ()
1. for each clique C,

2 wi(C) « H¢

piia(g;)=i

Procedure SP-Message (
i, /I sending clique

j I receiving clique
)
1. w(C) <y Hé‘k—ﬂ
ke(Nb;—{j})
2. (S, ;) « Zl//(ci)
C;-S

[ ]

3. return (S;))

32

16



