
1

1

Exact Inference 4: Message 
Passing

Introduction

• We will cover the sum-product message 
passing algorithm

• Also known as belief propagation
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Introduction

• Message passing is exact when the graph has 
no (undirected) loops eg.

• If there are loops, you need to use loopy belief 
propagation (which is approximate)
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A chain

A tree

Message Passing

Intuition (using a chain as an example)

• Each node maintains its current marginal ܲሺ ௜ܺሻ (also 
called its belief). 

• Initially, the marginal doesn’t take the influence of the 
neighbors into account

• Note that a Node’s belief is affected by its neighbors

• Neighboring nodes send messages to each other

4

ܺଶଵܺ
݉ଵ⟶ଶ

݉ଶ⟶ଵ



3

Introduction

Intuition (using a chain as an example)

• Node ܺଶ receives a message ݉ଵ⟶ଶfrom Node ଵܺ

• The message tells Node ܺଶ what state Node  ଵܺ thinks 
Node ܺଶ should be in

• The higher the value of the message, the more likely 
Node  ଵܺ thinks Node ܺଶ should be in that state

• Node ܺଶ updates its belief about ܲሺܺଶሻ
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ܺଶଵܺ
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Introduction

Intuition (using a chain as an example)

• At convergence, the belief at a Node ௜ܺ is the marginal 
probability ܲሺ ௜ܺሻ

• This is equivalent to a dynamic programming approach 
(very efficient!)
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Introduction

What if the graphical model isn’t a chain or a 
tree?

• Clump nodes into “mega-nodes” (ie. 
cliques) and treat the cliques like nodes

• This is where clique trees come in
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Clique Trees
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Cluster Graph

In this section we are dealing with a product 
over factors:
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• Normalized distribution for Bayesian networks since 
factors are CPDs

• Unnormalized distribution for Gibbs distributions

10

Cluster Graph

A cluster graph U for a set of factors  over X is 
an undirected graph, each of whose nodes i is 
associated with a subset Ci  X. 

1: C,D 2: G, I, D 3: G, S, I 5: G, J, S, L 4: H, G, J
D G, I G, S G, J

Example of a cluster graph
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Cluster Graph

• Each factor  must be associated with a 
cluster C, denoted (), such that Scope[]  Ci. 

• Each edge between a pair of clusters Ci and Cj

is associated with a sepset Si,j  Ci  Cj.

• A cluster graph is a generalization of a clique 
tree

1: C,D 2: G, I, D 3: G, S, I 5: G, J, S, L 4: H, G, J
D G, I G, S G, J

Example of a cluster graph
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Cluster Graph

1(C,D) 2(G, I, D) 3(G, S, I)

5(G, J, S, L)

4(H, G, J)

6(J, S, L) 7: J, L

1(D) 2(G, I)

3(G, S)

4(G, J)

5(J, S, L) 6(J, L)

A new way to interpret variable elimination:
• (Recall: variable elimination defines a cluster graph)
• Factors i accept messages j from another factor j

• Factors i also send their own messages i to another 
factor
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Cluster Graph

Step Variable Eliminated Factors Used New Factor

1 C C(C), D(D,C) 1(D)

2 D G(G,I,D), 1(D) 2(G,I)

3 I I(I), S(S,I), 2(G,I) 3(G,S)

4 H H(H,G,J) 4(G,J)

5 G 4(G,J), 3(G,S), L(L,G) 5(J,L,S)

6 S 5(J,L,S),  J(J, L, S) 6(J,L)

7 L 6(J,L) 7(J)

1(C,D) 2(G, I, D) 3(G, S, I)

5(G, J, S, L)

4(H, G, J)

6(J, S, L) 7: J, L

1(D) 2(G, I)

3(G, S)

4(G, J)

5(J, S, L) 6(J, L)
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Cluster Graph

1(C,D) 2(G, I, D) 3(G, S, I)

5(G, J, S, L)

4(H, G, J)

6(J, S, L) 7: J, L

1(D) 2(G, I)

3(G, S)

4(G, J)

5(J, S, L) 6(J, L)

Note:
• Cluster graph produced by variable elimination is a tree
• Each original factor  is used only once to create cluster 
• Execution of variable elimination causes messages to flow 

“ up”to a “root” node
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Cluster Graph

• T has the running intersection property if, 
whenever there is a variable X such that X  Ci

and X  Cj, then X is also in every cluster in the 
(unique) path in T between Ci and Cj.

• Example: cluster tree below obeys the running 
intersection property (see G in ܥଶ and ܥସ)

• Running intersection property implies sepset Si,j

= Ci  Cj.

1: C,D 2: G, I, D 3: G, S, I 5: G, J, S, L 4: H, G, J
D G, I G, S G, J

16

Cluster Graph

• Theorem 10.1: Let T be a cluster tree 
induced by a variable elimination algorithm 
over some set of factors . Then T 
satisfies the running intersection property.
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Clique Tree

• Let  be a set of factors over X. A cluster tree 
over  that satisfies the running intersection 
property is called a clique tree (aka junction tree 
or join tree). 

• In the case of a clique tree, the clusters are also 
called cliques.

18

Message Passing: Sum 
Product
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Message Passing: Sum Product

• Assume we are given a clique tree

• Note: can use the same clique tree to 
cache computations for multiple 
executions of variable elimination

• Cheaper than performing each variable 
elimination separately
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Message Passing: Sum Product

1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)

D G, I G, S G, J

Example: Simplified Extended Student Clique tree

P(D|C)
P(C)

P(G|I,D) P(I) 
P(S|I)

P(L|G) 
P(J|L,S)

P(H|G,J)

• First step: generate a set of initial potentials i(Ci) with 
each clique eg. by multiplying the initial factors 

• For instance, 5(J,L,G,S) = L(L,G)  J(J,L,S)

• Suppose we have to compute P(J):

• Select a root clique that does contain J eg. C5.
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Message Passing: Sum Product
1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)

12(D):
C 1(C1)

23(G,I):
D 2(C2)  12

35(G,S): 
I 3(C3)  23

45(G,J): 
H 4(C4)

Execute the following:

• In C1: Eliminate C by C 1(C,D). Resulting factor has 
scope D. Send message 12(D) to C2

• In C2: Define 2(G,I,D) = 12(D)2(G,I,D). Eliminate D to 
get a factor 23(G,I) which is sent to C3.

• In C3: Define 3(G,S,I) = 23(G,I)3(G,S,I). Eliminate I to 
get a factor 35(G,S) which is sent to C5.
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Message Passing: Sum Product
1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)

12(D):
C 1(C1)

23(G,I):
D 2(C2)  12

35(G,S): 
I 3(C3)  23

45(G,J): 
H 4(C4)

Execute the following:

• In C4: Eliminate H by H 4(H,G,J). Send factor 45(G,J)  
to C5.

• In C5: Define 5(G,J,S,L)= 35(G,S)  45(G,J) 
5(G,J,S,L)

• Sum out G, L, and S from 5 to get P(J)
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Message Passing: Sum Product

• Clique is ready when it has received all of its 
incoming messages eg. 

– C4 ready at the start 

– C2 ready only after getting message from C1

• C1, C4, C2, C3, C5 is a legal execution ordering 
for the tree rooted at C5

• C2, C1, C4, C3, C5 is not a legal execution 
ordering

1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)
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Message Passing: Sum Product

Could also define C4 as the root

• In C1: computation and message unchanged

• In C2: computation and message unchanged

• In C3: computation and message unchanged

1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)

12(D):
C 1(C1)

23(G,I):
D 2(C2)  12

35(G,S): 
I 3(C3)  23
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Message Passing: Sum Product

C4 as the root

• In C5: Define 5(G,J,S,L) = 35(G,S)5(G,J,S,L). 
Eliminate S and L. Send out factor 54(G,J) to C4.

• In C4: Define 4(H,G,J) = 54(G,S)4(H,G,J).

• Eliminate H and G from 4(H,G,J) to get P(J)

1: (C,D) 2: (G, I, D) 3: (G, S, I) 5: (G, J, S, L) 4: (H, G, J)

12(D):
C 1(C1)

23(G,I):
D 2(C2)  12

35(G,S): 
I 3(C3)  23

54(G,J): 
 L,S 5(C5)  35
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Message Passing: Sum Product

Clique-Tree Message Passing

1. Set initial potentials

2. Pass messages to neighboring cliques, 
sending to root clique
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Message Passing: Sum Product

1. Initial potentials
– Each factor ߶߳Φ is assigned to some clique 
ሺ߶ሻߙ

– The initial potential of Cj is: 

Ψ௝ ࢐࡯ ൌ ෑ ߶
థ:ఈ థ ୀ௝

– Since each factor is assigned to exactly one 
clique, we have: 

ෑ߶
థ

ൌෑΨ௝
௝
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Message Passing: Sum Product

2. Message passing
– Definitions:

• Cr = root clique
• Nbi = indices of cliques that are neighbors of Ci

• pr(i) = upstream neighbor of i (the one on the path 
to the root clique r)

– Start with the leaves of the clique tree and move 
inward

– Each clique Ci (except for the root) performs a 
message passing computation and sends message to 
upstream neighbor Cpr(i)
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Message Passing: Sum Product

Message from Ci to Cj:

 
 

 
jii i jNbk
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, }){(SC



Clique Ci multiplies incoming messages 
from its neighbors (except j) with its 
initial clique potential

Sums out all variables except those in 
the sepset between Ci and Cj

Sends resulting factor to Cj
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Message Passing: Sum Product

• At the root, once all messages are 
received, it multiplies them with its own 
initial potential

• Result is a factor called the beliefs r(Cr), 
which represents


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 
r
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Message Passing: Sum Product

Procedure CTree-SP-Upward  (
, // Set of factors
T, // Clique tree over 
, // Initial assignment of factors to cliques
Cr // Some selected root clique

)
1. Initialize-Cliques()
2. while Cr is not ready
3. Let Ci be a ready clique
4. i→pr(i) (Si,pr(i))  SP-Message(i,pr(i))
5.

6. return r





r
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Message Passing: Sum Product
Procedure Initialize-Cliques ()

1. for each clique Ci

2. 



i

ii

jj )(:

)(


 C

Procedure SP-Message (

i, // sending clique

j // receiving clique

)

1.

2.

3. return (Si,j)





}){(

)(
jNbk

ikii

i

 C





jii SC

iji

,

)()( , CS 


