Exact Inference 4: Message Passing

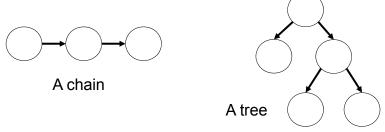
1

Introduction

- We will cover the sum-product message passing algorithm
- Also known as belief propagation

Introduction

 Message passing is exact when the graph has no (undirected) loops eg.



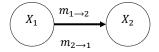
 If there are loops, you need to use loopy belief propagation (which is approximate)

3

Message Passing

Intuition (using a chain as an example)

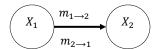
- Each node maintains its current marginal $P(X_i)$ (also called its belief).
- Initially, the marginal doesn't take the influence of the neighbors into account
- Note that a Node's belief is affected by its neighbors
- · Neighboring nodes send messages to each other



Introduction

Intuition (using a chain as an example)

- Node X_2 receives a message $m_{1\rightarrow 2}$ from Node X_1
- The message tells Node X_2 what state Node X_1 thinks Node X_2 should be in
- The higher the value of the message, the more likely Node X₁ thinks Node X₂ should be in that state
- Node X_2 updates its belief about $P(X_2)$

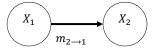


5

Introduction

Intuition (using a chain as an example)

- At convergence, the belief at a Node X_i is the marginal probability P(X_i)
- This is equivalent to a dynamic programming approach (very efficient!)



Introduction

What if the graphical model isn't a chain or a tree?

- Clump nodes into "mega-nodes" (ie. cliques) and treat the cliques like nodes
- This is where clique trees come in

7

Clique Trees

Cluster Graph

In this section we are dealing with a product over factors:

$$\widetilde{P}_{\Phi}(X) = \prod_{\phi_i \in \Phi} \phi_i(X_i)$$

- Normalized distribution for Bayesian networks since factors are CPDs
- Unnormalized distribution for Gibbs distributions

9

Cluster Graph

A cluster graph \mathcal{U} for a set of factors Φ over \mathcal{X} is an undirected graph, each of whose nodes i is associated with a subset $\mathbf{C}_i \subseteq \mathcal{X}$.

Example of a cluster graph

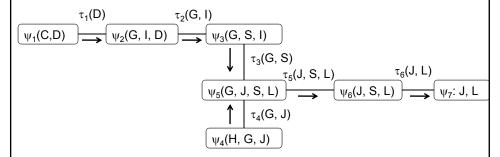
Cluster Graph

- Each factor φ∈Φ must be associated with a cluster C, denoted α(φ), such that Scope[φ] ⊆ C_i.
- Each edge between a pair of clusters $\textbf{\textit{C}}_i$ and $\textbf{\textit{C}}_j$ is associated with a sepset $\textbf{\textit{S}}_{i,j} \subseteq \textbf{\textit{C}}_i \cap \textbf{\textit{C}}_i$.
- A cluster graph is a generalization of a clique tree

Example of a cluster graph

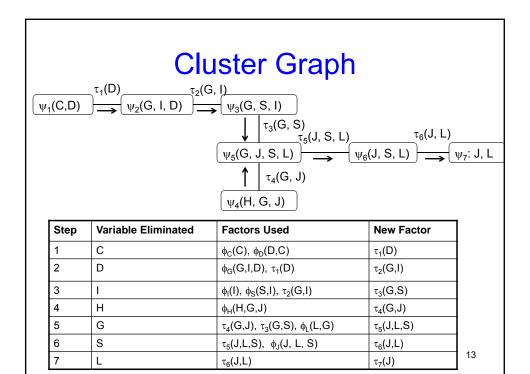
11

Cluster Graph



A new way to interpret variable elimination:

- (Recall: variable elimination defines a cluster graph)
- Factors ψ_i accept messages τ_i from another factor ψ_i
- Factors ψ_i also send their own messages τ_i to another factor



Note:

- Cluster graph produced by variable elimination is a tree
- Each original factor φ is used only once to create cluster ψ
- Execution of variable elimination causes messages to flow "up"to a "root" node

Cluster Graph

- T has the running intersection property if, whenever there is a variable X such that $X \in \mathbf{C}_i$ and $X \in \mathbf{C}_j$, then X is also in every cluster in the (unique) path in T between \mathbf{C}_i and \mathbf{C}_i .
- Example: cluster tree below obeys the running intersection property (see G in C₂ and C₄)

• Running intersection property implies sepset $\mathbf{S}_{i,j} = \mathbf{C}_i \cap \mathbf{C}_i$.

15

Cluster Graph

 Theorem 10.1: Let T be a cluster tree induced by a variable elimination algorithm over some set of factors Φ. Then T satisfies the running intersection property.

Clique Tree

- Let Φ be a set of factors over X. A cluster tree over Φ that satisfies the running intersection property is called a clique tree (aka junction tree or join tree).
- In the case of a clique tree, the clusters are also called cliques.

17

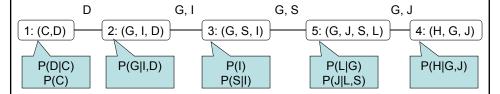
Message Passing: Sum Product

- · Assume we are given a clique tree
- Note: can use the same clique tree to cache computations for multiple executions of variable elimination
- Cheaper than performing each variable elimination separately

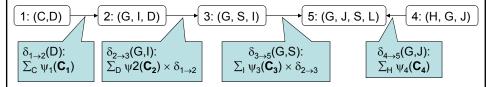
19

Message Passing: Sum Product

Example: Simplified Extended Student Clique tree



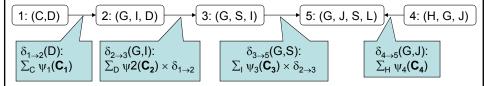
- First step: generate a set of initial potentials $\psi_i(\mathbf{C}_i)$ with each clique eg. by multiplying the initial factors
 - For instance, $\psi_5(J,L,G,S) = \phi_L(L,G) \cdot \phi_J(J,L,S)$
- Suppose we have to compute P(J):
 - Select a root clique that does contain J eg. C₅.



Execute the following:

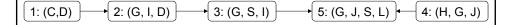
- In C_1 : Eliminate C by $\sum_C \psi_1(C,D)$. Resulting factor has scope D. Send message $\delta_{1\to 2}(D)$ to C_2
- In \mathbf{C}_2 : Define $\beta_2(G,I,D) = \delta_{1\to 2}(D) \cdot \psi_2(G,I,D)$. Eliminate D to get a factor $\delta_{2\to 3}(G,I)$ which is sent to \mathbf{C}_3 .
- In C_3 : Define $\beta_3(G,S,I) = \delta_{2\rightarrow 3}(G,I) \cdot \psi_3(G,S,I)$. Eliminate I to get a factor $\delta_{3\rightarrow 5}(G,S)$ which is sent to C_5 .

Message Passing: Sum Product



Execute the following:

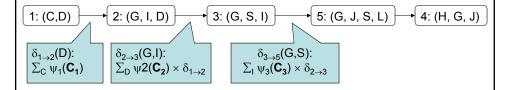
- In C_4 : Eliminate H by $\Sigma_H \psi_4(H,G,J)$. Send factor $\delta_{4\to 5}(G,J)$ to C_5 .
- In C_5 : Define $\beta_5(G,J,S,L) = \delta_{3\rightarrow 5}(G,S) \cdot \delta_{4\rightarrow 5}(G,J) \cdot \psi_5(G,J,S,L)$
- Sum out G, L, and S from β_5 to get P(J)



- Clique is ready when it has received all of its incoming messages eg.
 - C₄ ready at the start
 - C₂ ready only after getting message from C₁
- C₁, C₄, C₂, C₃, C₅ is a legal execution ordering for the tree rooted at C₅
- C₂, C₁, C₄, C₃, C₅ is not a legal execution ordering

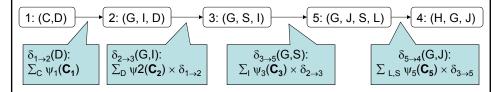
23

Message Passing: Sum Product



Could also define \mathbf{C}_4 as the root

- In C₁: computation and message unchanged
- In C2: computation and message unchanged
- In \mathbf{C}_3 : computation and message unchanged



C₄ as the root

- In C_5 : Define $\beta_5(G,J,S,L) = \delta_{3\to 5}(G,S)\cdot \psi_5(G,J,S,L)$. Eliminate S and L. Send out factor $\delta_{5\to 4}(G,J)$ to C_4 .
- In \mathbf{C}_4 : Define $\beta_4(H,G,J) = \delta_{5\rightarrow 4}(G,S)\cdot \psi_4(H,G,J)$.
- Eliminate H and G from β₄(H,G,J) to get P(J)

25

Message Passing: Sum Product

Clique-Tree Message Passing

- 1. Set initial potentials
- 2. Pass messages to neighboring cliques, sending to root clique

1. Initial potentials

- Each factor $\phi \epsilon \Phi$ is assigned to some clique $\alpha(\phi)$
- The initial potential of **C**_i is:

$$\Psi_j(\mathbf{C}_j) = \prod_{\phi: \alpha(\phi) = j} \phi$$

– Since each factor is assigned to exactly one clique, we have:

$$\prod_{\phi} \phi = \prod_{i} \Psi_{i}$$

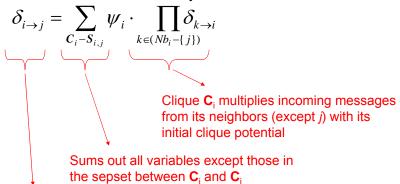
27

Message Passing: Sum Product

2. Message passing

- Definitions:
 - C_r = root clique
 - Nb_i = indices of cliques that are neighbors of C_i
 - p_r(i) = upstream neighbor of i (the one on the path to the root clique r)
- Start with the leaves of the clique tree and move inward
- Each clique C_i (except for the root) performs a message passing computation and sends message to upstream neighbor C_{pr(i)}

Message from C_i to C_i :



Sends resulting factor to C_i

29

Message Passing: Sum Product

- At the root, once all messages are received, it multiplies them with its own initial potential
- Result is a factor called the beliefs $\beta_r(\mathbf{C}_r)$, which represents

$$\widetilde{P}_{\Phi}(C_r) = \sum_{X-C_r} \prod_{\phi} \phi$$

Message Passing: Sum Product

```
Procedure Initialize-Cliques ()
```

1. for each clique C;

3.

2.
$$\psi_i(C_i) \leftarrow \prod_{\phi_i: \alpha(\phi_i)=i} \phi$$

```
Procedure SP-Message ( i, // sending clique j // receiving clique ) 
1. \psi(C_i) \leftarrow \psi_i \cdot \prod_{k \in (Nb_i - \{j\})} \delta_{k \rightarrow i}
2. \tau(S_{i,j}) \leftarrow \sum_{C_i - S_{i,j}} \psi(C_i)
```

return $\tau(\mathbf{S}_{i,i})$