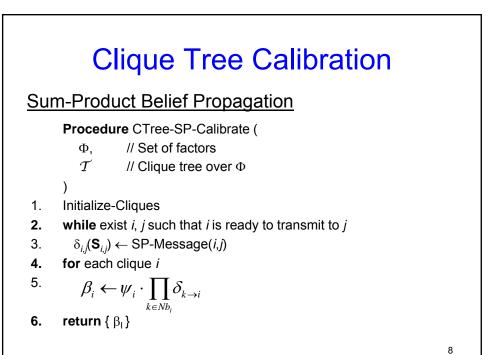
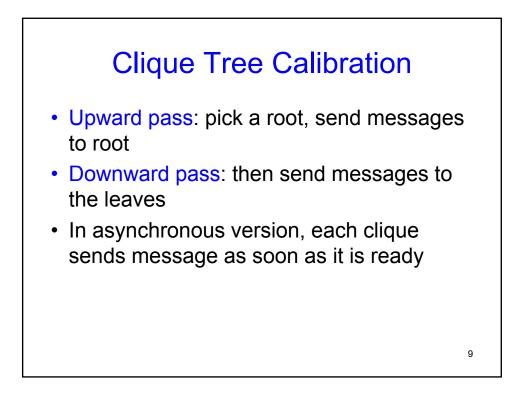
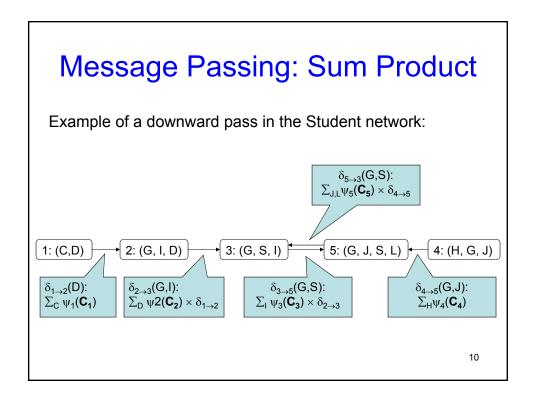


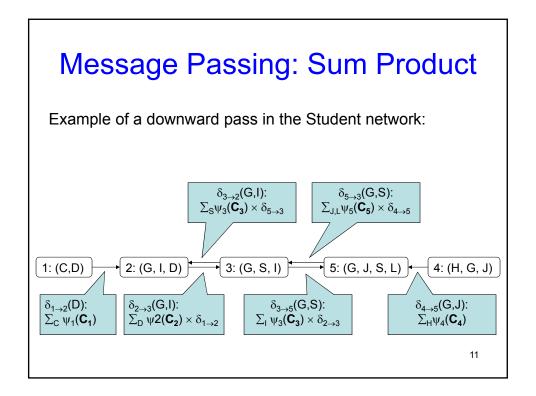
- Let *T* be a clique tree. We say that C_i is ready to transmit to a neighbor C_j when C_i has messages from all of its neighbors except from C_i
- When C_i is ready to transmit to C_j, is computes δ_{i→j}(S_{i,j}) from all incoming messages (except from C_i).
- Then eliminating the variables in C_i S_{i,j}
- Use dynamic programming to avoid recomputing the same message multiple times

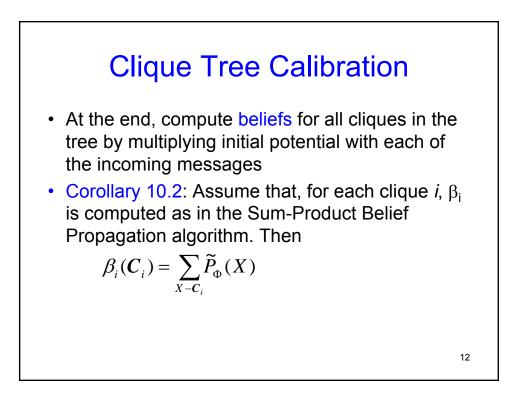


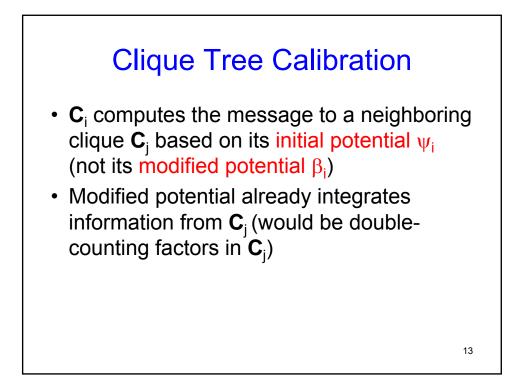
7

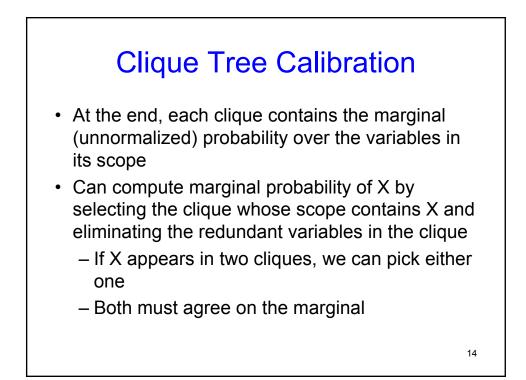


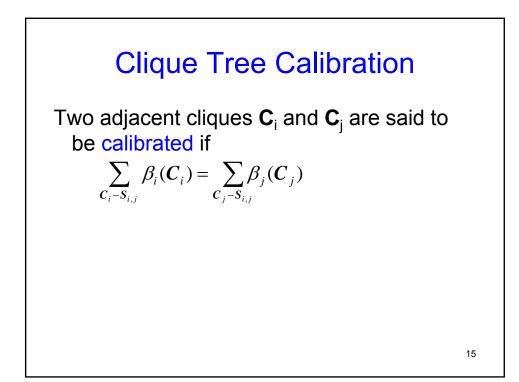


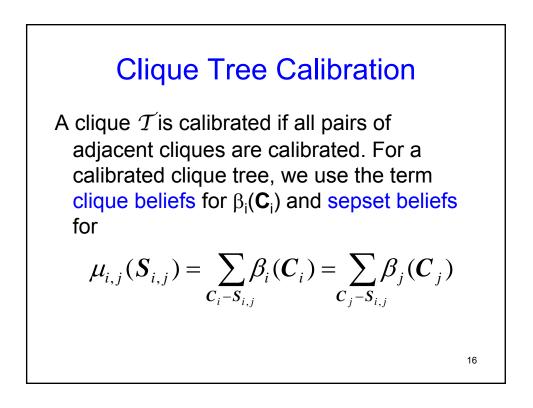


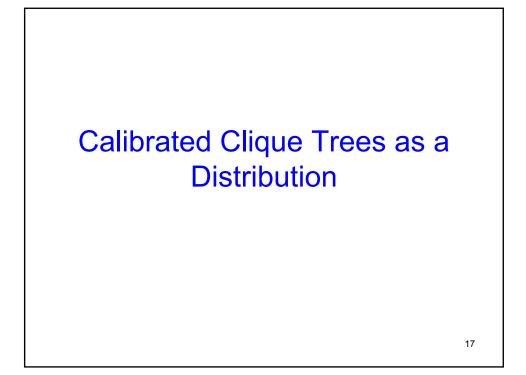


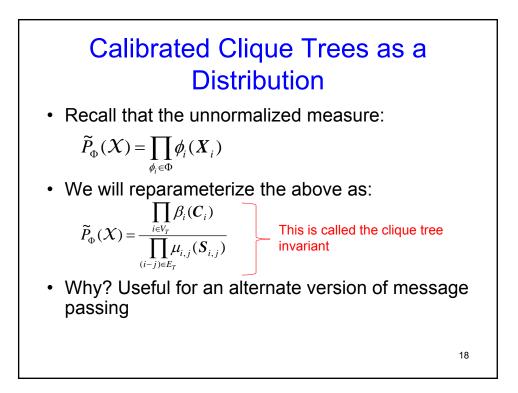












Calibrated Clique Trees as a Distribution

To see this, note that at calibration we have:

· Clique beliefs:

$$\beta_i = \psi_i \cdot \prod_{k \in Nb_i} \delta_{k \to i}$$

• Sepset beliefs:

$$\mu_{i,j}(S_{i,j}) = \sum_{C_i - S_{i,j}} \beta_i(C_i) = \sum_{C_i - S_{i,j}} \psi_i \cdot \prod_{k \in Nb_i} \delta_{k \to i}$$

$$= \sum_{C_i - S_{i,j}} \psi_i \cdot \delta_{j \to i} \prod_{k \in (Nb_i - \{j\})} \delta_{k \to i} = \delta_{j \to i} \sum_{C_i - S_{i,j}} \psi_i \cdot \prod_{k \in (Nb_i - \{j\})} \delta_{k \to i}$$

$$= \delta_{j \to i} \delta_{i \to j}$$
19

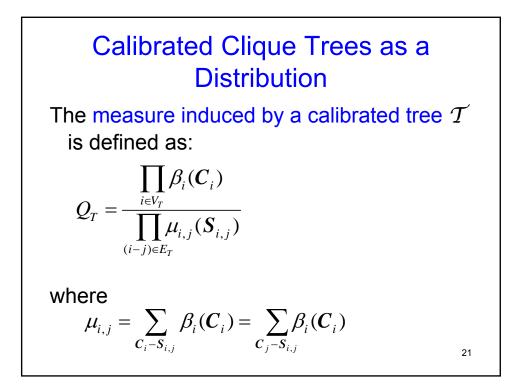
Calibrated Clique Trees as a Distribution Using the clique beliefs and sepset beliefs,

$$\widetilde{P}_{\Phi}(\mathcal{X}) = \frac{\prod_{i \in V_T} \beta_i(C_i)}{\prod_{(i-j) \in E_T} \mu_{i,j}(S_{i,j})} = \frac{\prod_{i \in V_T} \psi_i(C_i) \prod_{k \in Nb_i} \delta_{k \to i}}{\prod_{(i-j) \in E_T} \delta_{i \to j} \delta_{j \to i}}$$

Each message $\delta_{i \to j}$ appears once in the numerator and once in the denominator:

$$\widetilde{P}_{\Phi}(\mathcal{X}) = \prod_{i \in V_T} \psi_i(C_i)$$

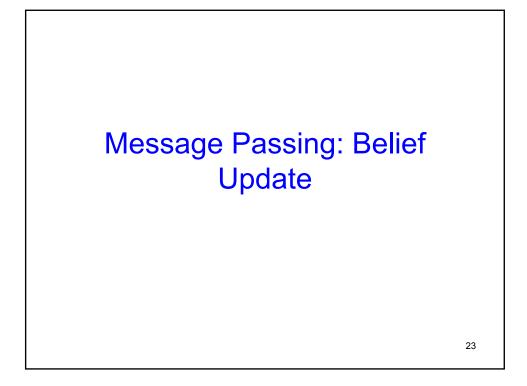
20

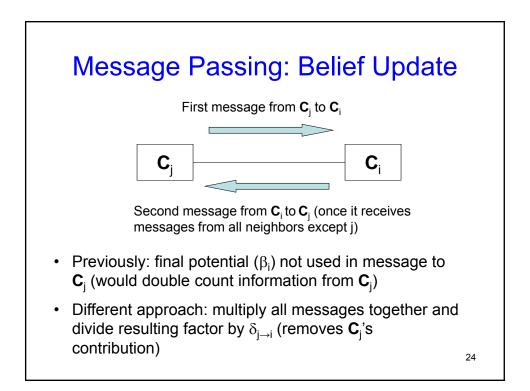


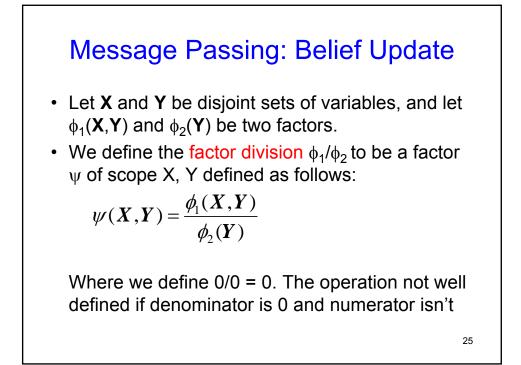
Calibrated Clique Trees as a Distribution

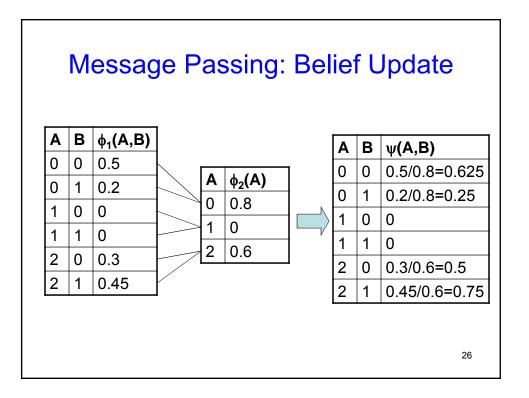
Theorem 10.4: Let \mathcal{T} be a clique tree over Φ , and let $\beta_i(\mathbf{C}_i)$ be a set of calibrated potentials for \mathcal{T} . Then, $\widetilde{P}_{\Phi}(\mathcal{X}) \propto Q_{\mathcal{T}}$ if and only if, for each $i \in V_{\mathcal{T}}$, we have that $\beta_i(\mathbf{C}_i) \propto \widetilde{P}_{\Phi}(\mathbf{C}_i)$ (Proof Omitted) This alternate representation of the joint measure directly reveals the clique marginals $\beta_i(\mathbf{C}_i)$

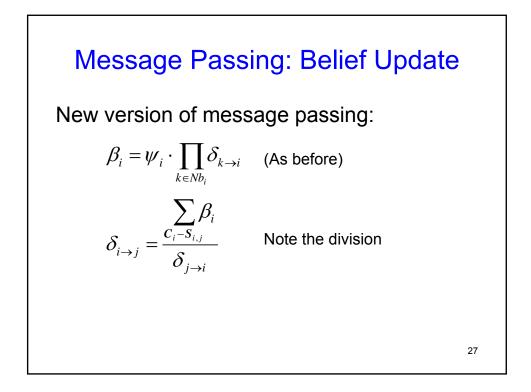
22

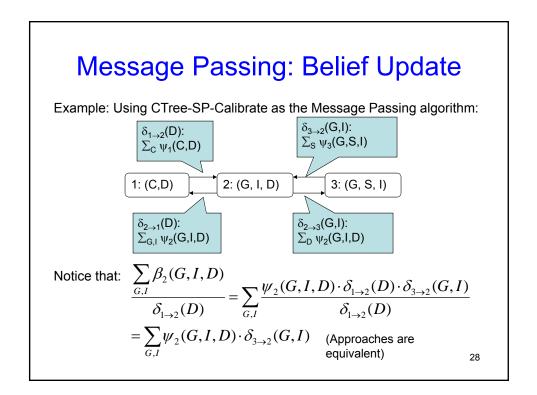


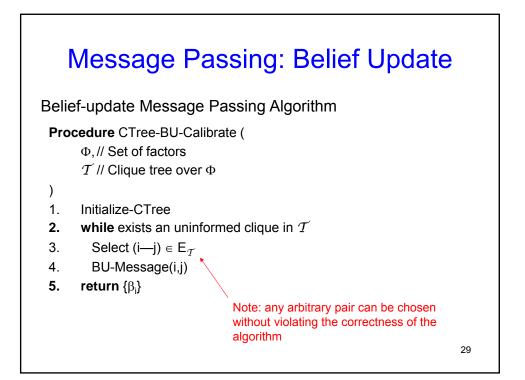


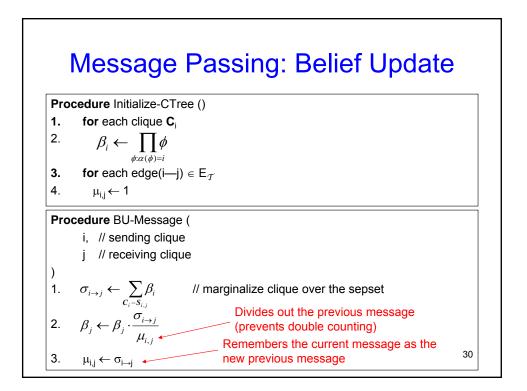


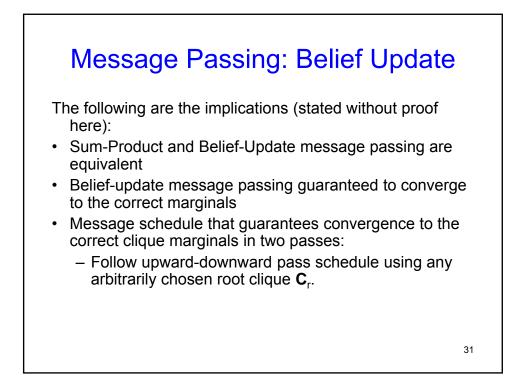


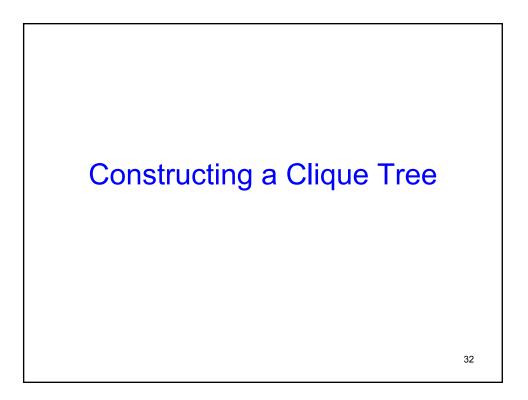












Constructing a Clique Tree

How do we construct a clique tree?

- 1. Through executing Variable Elimination
 - A clique C_i corresponds to a factor ψ_i
 - Undirected edge connects C_i and C_j when τ_i is used directly in the computation of ψ_j (or vice versa)
 - Cliques in clique tree are maximal cliques in the induced graph

