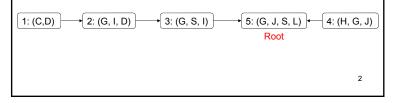


Clique Tree Calibration

- In the previous lecture, we used the clique tree to compute the probability of a single variable eg. P(J)
- Root clique must contain J
- Messages passed upstream (toward root)



Clique Tree Calibration

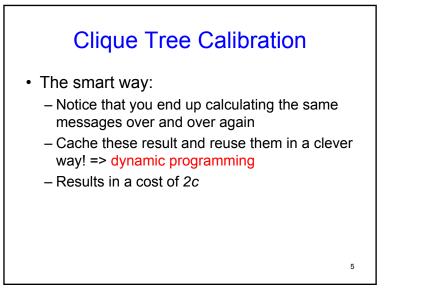
- But we often want to compute the probability of a large number of variables eg. P(J), P(C), P(H)
- What if we wanted to compute the probability of every random variable in the network?

Clique Tree Calibration

- The expensive way:
 - Run clique tree inference for each node
 - Cost is O(c * number of nodes)
- A little less expensive:
 - Make each clique the root and run inference
 - Cost is O(c * number of cliques)

Where *c* = cost of running clique tree inference

3

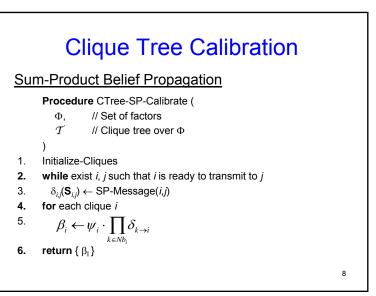


Clique Tree Calibration

- As long as the root clique is on the C_j side, exactly the same message is sent from C_i to C_j (regardless of which clique is the root)
- Same thing applies if the root is on the C_i side
- For any given clique tree, each edge has two messages associated with it one for each direction
- If there are *c* cliques, there are *(c-1)* edges and *2(c-1)* messages to compute

6

- Let *T* be a clique tree. We say that C_i is ready to transmit to a neighbor C_j when C_i has messages from all of its neighbors except from C_i
- When C_i is ready to transmit to C_j, is computes δ_{i→j}(S_{i,j}) from all incoming messages (except from C_i).
- Then eliminating the variables in C_i S_{i,i}
- Use dynamic programming to avoid recomputing the same message multiple times



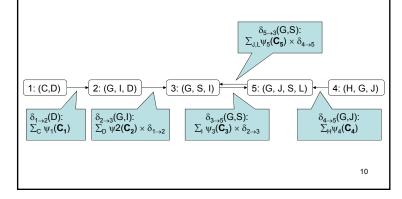
- Upward pass: pick a root, send messages to root
- Downward pass: then send messages to the leaves

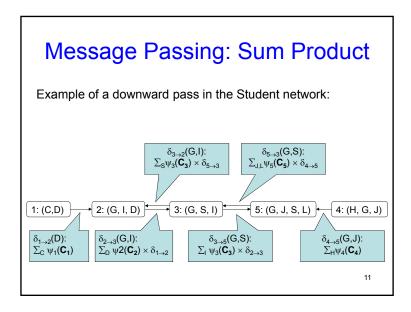
9

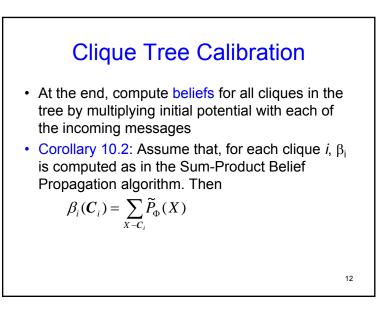
• In asynchronous version, each clique sends message as soon as it is ready

Message Passing: Sum Product

Example of a downward pass in the Student network:







Clique Tree Calibration

 C_i computes the message to a neighboring clique C_j based on its initial potential ψ_i (not its modified potential β_i)

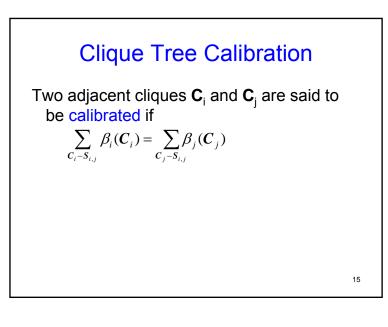
13

 Modified potential already integrates information from C_j (would be doublecounting factors in C_j)

Clique Tree Calibration

- At the end, each clique contains the marginal (unnormalized) probability over the variables in its scope
- Can compute marginal probability of X by selecting the clique whose scope contains X and eliminating the redundant variables in the clique
 - If X appears in two cliques, we can pick either one
 - Both must agree on the marginal

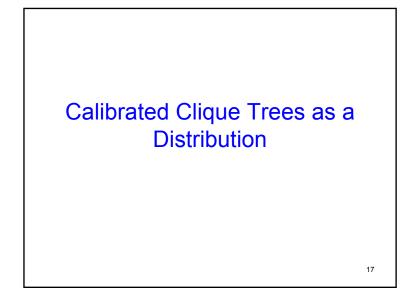
14



Clique Tree Calibration

A clique \mathcal{T} is calibrated if all pairs of adjacent cliques are calibrated. For a calibrated clique tree, we use the term clique beliefs for $\beta_i(\mathbf{C}_i)$ and sepset beliefs for

$$\mu_{i,j}(\boldsymbol{S}_{i,j}) = \sum_{\boldsymbol{C}_i - \boldsymbol{S}_{i,j}} \beta_i(\boldsymbol{C}_i) = \sum_{\boldsymbol{C}_j - \boldsymbol{S}_{i,j}} \beta_j(\boldsymbol{C}_j)$$



Calibrated Clique Trees as a Distribution

• Recall that the unnormalized measure:

$$\widetilde{P}_{\Phi}(\mathcal{X}) = \prod_{\phi_i \in \Phi} \phi_i(X_i)$$

• We will reparameterize the above as:

$$\widetilde{P}_{\Phi}(\mathcal{X}) = \frac{\prod_{i \in V_T} \beta_i(C_i)}{\prod_{(i-j) \in E_T} \mu_{i,j}(S_{i,j})}$$

 Why? Useful for an alternate version of message passing

invariant

This is called the clique tree

Calibrated Clique Trees as a Distribution

To see this, note that at calibration we have:

Clique beliefs:

$$\beta_i = \psi_i \cdot \prod_{k \in Nb_i} \delta_{k \to i}$$

Sepset beliefs:

$$\begin{split} \mu_{i,j}(S_{i,j}) &= \sum_{C_i - S_{i,j}} \beta_i(C_i) = \sum_{C_i - S_{i,j}} \psi_i \cdot \prod_{k \in Nb_i} \delta_{k \to i} \\ &= \sum_{C_i - S_{i,j}} \psi_i \cdot \delta_{j \to i} \prod_{k \in (Nb_i - \{j\})} \delta_{k \to i} = \delta_{j \to i} \sum_{C_i - S_{i,j}} \psi_i \cdot \prod_{k \in (Nb_i - \{j\})} \delta_{k \to i} \\ &= \delta_{j \to i} \delta_{i \to j} \end{split}$$

19

Calibrated Clique Trees as a Distribution

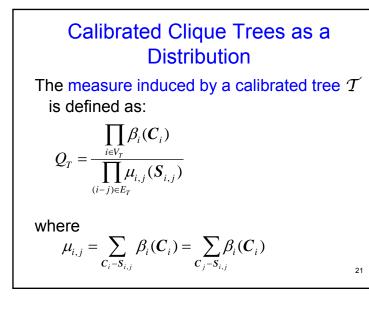
Using the clique beliefs and sepset beliefs,

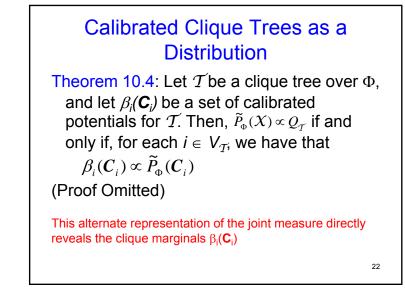
$$\widetilde{P}_{\Phi}(\mathcal{X}) = \frac{\prod_{i \in V_T} \beta_i(C_i)}{\prod_{(i-j) \in E_T} \mu_{i,j}(S_{i,j})} = \frac{\prod_{i \in V_T} \psi_i(C_i) \prod_{k \in Nb_i} \delta_{k \to i}}{\prod_{(i-j) \in E_T} \delta_{i \to j} \delta_{j \to i}}$$

Each message $\delta_{i \rightarrow j}$ appears once in the numerator and once in the denominator:

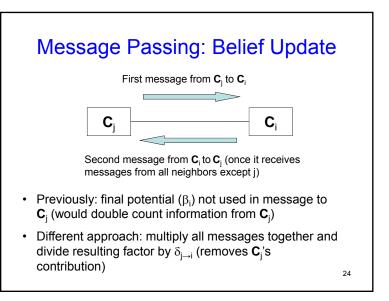
$$\widetilde{P}_{\Phi}(\mathcal{X}) = \prod_{i \in V_T} \psi_i(C_i)$$

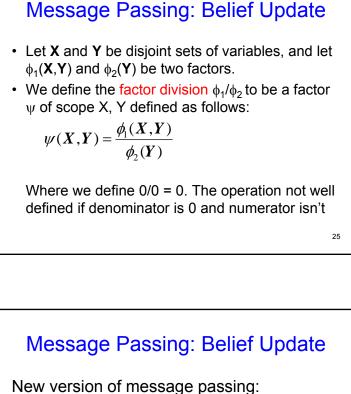
20

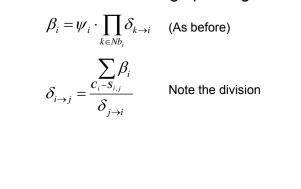


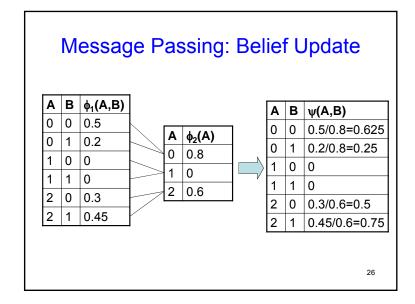


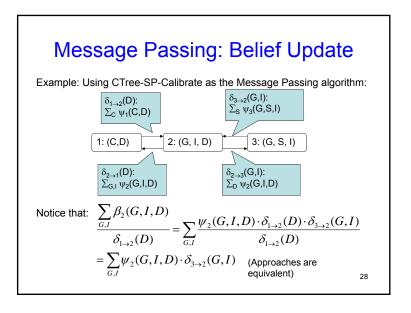
Message Passing: Belief Update

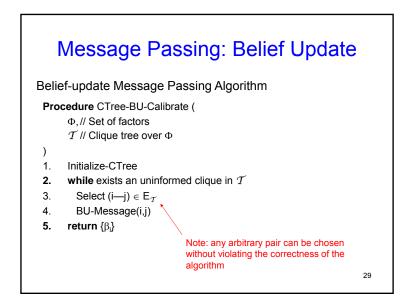




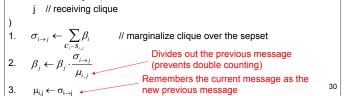








$\begin{array}{l} \label{eq:procedure_linear} \textbf{Message Passing: Belief Update} \\ \hline \textbf{Procedure Initialize-CTree ()} \\ \textbf{1. for each clique C_i} \\ \textbf{2. } & \beta_i \leftarrow \prod_{\substack{\phi \alpha(\phi)=i} \\ \phi \in \alpha(\phi)=i} \\ \textbf{3. for each edge(i-j)} \in E_{\mathcal{T}} \\ \textbf{4. } & \mu_{i,j} \leftarrow 1 \\ \hline \textbf{Procedure BU-Message (} \\ i, \ \textit{// sending clique} \\ \end{array}$



Message Passing: Belief Update

The following are the implications (stated without proof here):

- Sum-Product and Belief-Update message passing are equivalent
- Belief-update message passing guaranteed to converge to the correct marginals
- Message schedule that guarantees convergence to the correct clique marginals in two passes:
 - Follow upward-downward pass schedule using any arbitrarily chosen root clique C_r.

31

Constructing a Clique Tree

Constructing a Clique Tree

How do we construct a clique tree?

- 1. Through executing Variable Elimination
 - A clique C_i corresponds to a factor ψ_i
 - Undirected edge connects C_i and C_j when τ_i is used directly in the computation of ψ_j (or vice versa)
 - Cliques in clique tree are maximal cliques in the induced graph

33

Constructing a Clique Tree

- 2. Manipulating the graph directly
 - 1. Given a set of factors, construct the undirected graph \mathcal{H}_{Φ}
 - 2. Triangulate \mathcal{H}_{Φ} to construct a chordal graph \mathcal{H}^{*}
 - 3. Find cliques in \mathcal{H}^* , and make each one a node in a cluster graph
 - 4. Run the maximum spanning tree algorithm on the cluster graph to construct a tree

34

36

Constructing a Clique Tree

- Triangulation: constructing a chordal graph that subsumes an existing graph ${\mathcal H}$
- Minimum triangulation: largest clique in the resulting chordal graph has minimum size
- Finding the minimum triangulation is NPhard – need to resort to heuristics

Constructing a Clique Tree

- Finding the maximal clique in a general graph is NP-hard
 - But for chordal graphs, this is easy (number of possible approaches)
- Finding edges in clique tree
 - Use maximum spanning tree algorithm
 - Nodes are the maximal cliques, edges have weight equal to $|\bm{C}_i \cap \bm{C}_j|$