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Structure Learning: Parameter 
Estimation
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Structure Learning

Learning Bayesian networks from data can 
be broken down into the following:

1. Known structure, unknown parameters 
2. Unknown structure, unknown parameters

The first case, which involves parameter estimation.  We will 
deal with this case today.
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Parameter Estimation
There are many techniques for parameter estimation:

Algorithm Situation
Maximum Likelihood / Maximum a 
posteriori (MAP)

General

Laplace 2nd order approximation
EM Missing values, hidden variables
Iterative Proportional Fitting (IPF) Undirected networks
Mean field Approximate moments
Gibbs Approximate moments
MCMC Approximate moments

Table from Wray Buntine.  “A Guide to the Literature on Learning Probabilistic Networks 
from Data”.
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We will discuss Maximum Likelihood 
Estimation (MLE), which is part of 

statistical inference
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Statistical Inference

Statistical inference is the process of using 
data to infer the ditribution that generated 
the data.  

Given a sample                       how do we 
infer F?

In some cases, we may want to infer only 
some feature of F such as its mean

FXX n ~,,1 

This means “drawn from a distribution F”
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Parametric Models

A statistical model F is a set of distributions.  A 
parametric model is a set F that can be 
parameterized by a finite set of parameters.

In general, a parametric model takes the form:
} :);({  xfF

Value of the random variable
Parameter (or vector of 
parameters) that can take values 
in the parameter space .

Side note: A non-parametric model is a set F that cannot be parameterized by a 
finite number of parameters.  It makes no assumptions about the form of the 
model.

Examples of Parametric Models
Discrete Distributions:
1. Bernoulli

2. Binomial

3. Multinomial
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for p  [0,1], x  {0,1}

for x=0,…,n, p  [0,1], 
n is a positive integer

0 otherwise

for xi = n, pi  [0,1], pi = 1

(Think of this as flipping a coin)

(Think of this as flipping n coins)

(Think of this as flipping a k-sided dice n times)
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Examples of Parametric Models
Continuous Distributions:
1. Normal
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Examples of Parametric Models
Continuous Distributions:
2. Beta
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Examples of Parametric Models
Continuous Distributions:
3. Dirichlet (Generalization of a Beta)
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for xi ≥ 0,  xi = 1

For the 2D case:
x2

x1

f(x1,x2)
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Frequentist vs Bayesian Inference

• There are two dominant approaches to 
statistical inference known as the 
frequentist and Bayesian approaches

• We’ll first cover the frequentist approach 
• Then we will discuss the Bayesian 

approach and the differences
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Point Estimation

• Point estimation refers to providing a 
single “best guess” of some quantity of 
interest eg. a parameter 

• We denote a point estimate of  by    or
• Note:

–  is the true value of the parameter.  It is a 
fixed, unknown quantity

– is an estimate of .  It depends on the data 
and is a random variable 
̂

n̂̂
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Point Estimation (Formally)

Let X1, …, Xn be n independent, identically 
distributed data points from some distribution F.

A point estimator     of a parameter  is some 
function of X1, .., Xn:

̂
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is unbiased if 
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The bias of an estimator is defined by:
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Point Estimation

A point estimator     of a parameter  is 
consistent if:

̂

 nP n  as 0every for     0)|ˆ(| 

We say “     converges to  in probability” or write:̂


p
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Maximum Likelihood

Let X1, …, Xn be independent, identically 
distributed with pdf f(x;).  The likelihood 
function is defined by:
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The log-likelihood function is defined by:
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Maximum Likelihood

The maximum likelihood function is just the 
joint density of the data.  We treat it as a 
function of  ie. ),0[: nL

Note: The likelihood function is not a density 
function.  In general, it is not true that Ln()
integrates to 1 with respect to 
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Maximum Likelihood

• The Maximum Likelihood Estimator (MLE) 
denoted     is the value of  that maximizes 
Ln().

• Maximizing the log-likelihood leads to the 
same answer as maximizing the likelihood.

• Note: Multiplying Ln() by any positive 
constant c does not change the MLE.  We 
tend to drop constants in the likelihood 
function

̂
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Maximum Likelihood

Example: You buy a bag of lime-cherry 
candy with n pieces of candy.  You unwrap 
all n pieces, resulting in data X1, …, Xn
where Xi = {cherry, lime}.  

You want to estimate , which is the 
probability that a randomly chosen candy 
from the bag is cherry flavored.  

The probability function for a single candy is 
f(x;) = x(1- )1-x (Bernoulli distribution)
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Maximum Likelihood
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You’ve just estimated the 
parameters for a one node 
Bayesian network with the 
following CPT:

X
X P(X)
lime 1-
cherry 
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Maximum Likelihood

The recipe for the MLE:
1. Write down Ln() or ln()
2. Take derivative with respect to each 

parameter
3. Find the parameter values such that the 

derivatives are zero
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Maximum Likelihood

Example: suppose the candy wrapper gives a hint 
as to the flavor.  The wrapper can be red or 
green and is chosen probabilistically given the 
flavor X.

W

X
X P(X)
lime 1-
cherry 

X W P(W|X)
cherry red c

cherry green 1-c

lime red l

lime green 1-l

P(W,X) = P(W|X)P(X)
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Maximum Likelihood
Notation:
• c = # of cherry flavored candies
• l = # of lime flavored candies
• rc = # of cherry flavored candies with red 

wrappers
• gc = # of cherry flavored candies with green 

wrappers
• rl = # of lime flavored candies with red wrappers
• gl = # of lime flavored candies with green 

wrappers
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Maximum Likelihood
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lime 1-

cherry 

X W P(W|X)

cherry red c
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Maximum Likelihood

• With complete data (ie. no missing values 
or hidden variables), parameter learning 
decomposes into separate learning 
problems, one for each parameter

• If any of the observed counts are 0, the 
MLE for that parameter is 0

• The MLE is consistent:
*ˆ 

p

n 
Where * is the true value of the 
parameter 


