Structure Learning: Parameter Estimation

Structure Learning

Learning Bayesian networks from data can be broken down into the following:

- 1. Known structure, unknown parameters
- 2. Unknown structure, unknown parameters

The first case, which involves parameter estimation. We will deal with this case today.

Parameter Estimation

There are many techniques for parameter estimation:

Algorithm	Situation	
Maximum Likelihood / Maximum a posteriori (MAP)	General	
Laplace	2 nd order approximation	
EM	Missing values, hidden variables	
Iterative Proportional Fitting (IPF)	Undirected networks	
Mean field	Approximate moments	
Gibbs	Approximate moments	
MCMC	Approximate moments	

Table from Wray Buntine. "A Guide to the Literature on Learning Probabilistic Networks from Data".

Parameter Estimation

2

4

1

There are many techniques for parameter estimation:

Algorith	m	Situation	
Maximum Likelihood / Maximum a posteriori (MAP)		General	
Laplace		2 nd order approximation	
EM	We will discuss Maximum Likelihood		es, hidden variables
Iterative	Estimation (MLE), which	Estimation (MLE), which is part of	
Mean fie	statistical inference		moments
Gibbs		Approximate moments	
MCMC		Approximate moments	

Table from Wray Buntine. "A Guide to the Literature on Learning Probabilistic Networks from Data".

3

Frequentist vs Bayesian Inference

- There are two dominant approaches to statistical inference known as the frequentist and Bayesian approaches
- We'll first cover the frequentist approach

11

• Then we will discuss the Bayesian approach and the differences

Point Estimation (Formally)

The bias of an estimator is defined by: $bias(\hat{\theta}_n) = E_{\theta}(\hat{\theta}_n) - \theta$

 $\hat{\theta}$ is unbiased if $bias(\hat{\theta}_n) = 0$

Point Estimation

A point estimator $\hat{\theta}$ of a parameter θ is consistent if: $P(|\hat{\theta}_n - \theta| > \varepsilon) \rightarrow 0$ for every $\varepsilon > 0$ as $n \rightarrow \infty$ We say " $\hat{\theta}$ converges to θ in probability" or write: $\hat{\theta}_n \stackrel{p}{\rightarrow} \theta$

Maximum Likelihood

Let $X_1, ..., X_n$ be independent, identically distributed with pdf $f(x; \theta)$. The likelihood function is defined by:

$$L_n(\theta) = \prod_{i=1}^n f(X_i;\theta)$$

The log-likelihood function is defined by:

$$l_n(\theta) = \log L_n(\theta)$$

15

13

Maximum Likelihood

The maximum likelihood function is just the joint density of the data. We treat it as a function of θ ie. $L_n: \Theta \rightarrow [0,\infty)$

Note: The likelihood function is not a density function. In general, it is not true that $L_n(\theta)$ integrates to 1 with respect to θ

Maximum Likelihood

- The Maximum Likelihood Estimator (MLE) denoted $\hat{\theta}$ is the value of θ that maximizes $L_n(\theta)$.
- Maximizing the log-likelihood leads to the same answer as maximizing the likelihood.
- Note: Multiplying $L_n(\theta)$ by any positive constant *c* does not change the MLE. We tend to drop constants in the likelihood function

all n pieces, resulting in data $X_1, ..., X_n$ where $X_i = \{cherry, lime\}$.

17

You want to estimate θ , which is the probability that a randomly chosen candy from the bag is cherry flavored.

Maximum Likelihood

candy with *n* pieces of candy. You unwrap

Example: You buy a bag of lime-cherry

The probability function for a single candy is $f(x;\theta) = \theta^{x}(1-\theta)^{1-x}$ (Bernoulli distribution)

Maximum Likelihood

Notation:

- *c* = # of cherry flavored candies
- / = # of lime flavored candies
- *r_c* = # of cherry flavored candies with red wrappers
- g_c = # of cherry flavored candies with green wrappers
- $r_1 = #$ of lime flavored candies with red wrappers
- *g_l* = # of lime flavored candies with green wrappers

