Structure Learning: Parameter Estimation II

Bayesian Inference

- The MLE is a frequentist inference method. There is another approach to inference called Bayesian inference.
- The key differences between frequentist and Bayesian approaches are shown in the next slides
- See "A primer on Bayesian statistics in Health Economics and Outcomes research" by Anthony O'Hagan and Bryan R. Luce

2

4

Bayesian Inference

1

The Nature of Probability

Frequentist	Bayesian
Probability is a limiting, long-run frequency	Probability measures a personal degree of belief
It only applies to events that are (at least in principle) repeatable	It applies to any event or proposition about which we are uncertain
	3

Bayesian Inference

The Nature of Parameters		
ist Bayesian		
Parameters are unknown		
They are therefore random variables		

Bayesian I	Bayesian Inference		
The Nature of Inference			
Frequentist	Bayesian		
Does not (although it appears to) make statements about parameters	Makes direct probability statements about parameters		
Interpreted in terms of long-run repetition	Interpreted in terms of evidence from the observed data		
	1		

Bayesian inference

Bayesian inference:

- 1. Choose probability density $f(\theta)$ called the prior distribution that expresses our beliefs about a parameter θ before we see any data.
- 2. We choose a statistical model $f(x|\theta)$
- 3. After observing data $X_1, ..., X_n$, we update our beliefs and calculate the posterior distribution $f(\theta|X_1, ..., X_n)$

6

Conjugate Priors

Let's redo the first candy example except this time, we will put a $Beta(\alpha, \beta)$ prior on θ . Recall that θ is the probability a candy will be cherry flavored. The posterior has the form:

$$f(\theta|x_1, \dots, x_n) = \frac{f(\theta)L_n(\theta)}{\int f(\theta)L_n(\theta)d\theta}$$

$$f(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}$$

where $\Gamma(z) = (z - 1)!$

$\begin{aligned} & f(\theta | x_1, ..., x_n) = \frac{f(\theta) L_n(\theta)}{\int f(\theta) L_n(\theta) d\theta} \\ & = \frac{f(\theta + x_1, ..., x_n) = \frac{f(\theta) L_n(\theta)}{\int f(\theta) L_n(\theta) d\theta} \\ & = \frac{f(\theta + \theta)}{f(\theta) \Gamma(\theta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} \theta^{\alpha} (1 - \theta)^{1} \theta^{\alpha} \\ & = \frac{f(\theta + \theta)}{f(\theta) \Gamma(\theta)} \int \theta^{\alpha} (1 - \theta)^{1} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1} d\theta \\ & = \frac{\theta^{\alpha} (1 - \theta)^{1} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}}{\int \theta^{\alpha} (1 - \theta)^{1 - \beta - 1} d\theta} = \frac{\theta^{\alpha + \alpha - 1} (1 - \theta)^{1 + \beta - 1}}{\int \theta^{\alpha + \alpha - 1} (1 - \theta)^{1 + \beta - 1} d\theta} \end{aligned}$ Let's take a look at this term in the denominator

Conjugate Priors

Below is the Beta distribution with alpha parameter = $c + \alpha$ and beta parameter = $l + \beta$. Since it is a known pdf, it will integrate to 1.

$$\int Beta(c+\alpha, l+\beta) \, d\theta = \int \frac{\Gamma(c+\alpha+l+\beta)}{\Gamma(c+\alpha)\Gamma(l+\beta)} \theta^{c+\alpha-1} (1-\theta)^{l+\beta-1} d\theta = 1$$

This is the term in the denominator from the previous page. It is almost a Beta distribution except it is missing the normalization constant in front.

$$\int \theta^{c+\alpha-1} (1-\theta)^{l+\beta-1} d\theta$$

Let's call the normalization constant (the expression with the Gammas) c. The expression above becomes:

$$\int \theta^{c+\alpha-1} (1-\theta)^{l+\beta-1} d\theta = \frac{1}{c} \int c \, \theta^{c+\alpha-1} (1-\theta)^{l+\beta-1} d\theta = \frac{1}{c}$$

Conjugate Priors

Continuing from where we left off...

$$f(\theta \mid x_1, ..., x_n) = \frac{\theta^{c+\alpha-1} (1-\theta)^{l+\beta-1}}{\int \theta^{c+\alpha-1} (1-\theta)^{l+\beta-1} d\theta}$$

=
$$\frac{\theta^{c+\alpha-1} (1-\theta)^{l+\beta-1}}{\frac{\Gamma(c+\alpha)\Gamma(l+\beta)}{\Gamma(c+\alpha+l+\beta)}} = \frac{\Gamma(c+\alpha+l+\beta)}{\Gamma(c+\alpha)\Gamma(l+\beta)} \theta^{c+\alpha-1} (1-\theta)^{l+\beta-1}$$

=
$$Beta(c+\alpha, l+\beta)$$

Conjugate Priors

- A conjugate prior is a family of prior probability distributions with the property that the posterior also belongs to that family.
- eg. the conjugate prior for a Bernoulli is a Beta distribution
- Other useful conjugate priors:

Likelihood	Conjugate Prior	Posterior
Normal	Normal	Normal
Binomial	Beta	Beta
Poisson	Gamma	Gamma
Multinomial	Dirichlet	Dirichlet

Conjugate Priors

Why are they useful?

- Since we know the form of the posterior, we can easily calculate statistics such as the mean.
- · For example, we know:

$$E[Beta(\alpha,\beta)] = \frac{\alpha}{\alpha+\beta}$$

• Thus, the mean for the candy example above is:

$$E[Beta(c+\alpha, l+\beta)] = \frac{\alpha+c}{\alpha+\beta+l+c}$$

14

16

Conjugate Priors

$$E[Beta(c+1,l+1)] = \frac{\alpha+c}{\alpha+\beta+l+c} = \frac{1+c}{2+l+c}$$

- If we observe no data, ie. c=0, l=0, the posterior mean is ½, which is what we would expect since we have to pick between the two flavors of lime and cherry
- If we observe lots of data, then the *c* term in the numerator and the *l*+*c* term in the denominator dominate the prior

- The conjugate prior that is of most relevance to parameter estimation is the Multinomial-Dirichlet
- Recall that a Dirichlet distribution is a generalization of a Beta distribution
- And a Multinomial distribution is a generalization of a Binomial distribution
- If a node in a Bayesian network can take 2 values, the analysis is just like the Beta-Binomial example in previous slides
- If it takes more than 2 values, then you have to use a Multinomial-Dirichlet

17

Likelihood	Conjugate Prior	Posterior
Binomial(x n, p)	Beta(α, β)	Beta(x+α, n-x+β)
Multinomial(x ₁ ,,x _k n,	Dirichlet($p_1,, p_k \alpha_1,, p_k$	Dirichlet($x_1 + \alpha_1,, x_k$
	$n + \alpha + \beta$	

