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Structure Learning: Parameter 
Estimation II
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Bayesian Inference

• The MLE is a frequentist inference method.  
There is another approach to inference called 
Bayesian inference.  

• The key differences between frequentist and 
Bayesian approaches are shown in the next 
slides

• See “A primer on Bayesian statistics in Health 
Economics and Outcomes research” by Anthony 
O’Hagan and Bryan R. Luce
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Bayesian Inference

Frequentist Bayesian
Probability is a limiting, long-run 
frequency

Probability measures a personal 
degree of belief

It only applies to events that are (at 
least in principle) repeatable

It applies to any event or 
proposition about which we are 
uncertain

The Nature of Probability
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Bayesian Inference
The Nature of Parameters

Frequentist Bayesian
Parameters are not repeatable or 
random

Parameters are unknown

They are therefore not random 
variables, but fixed (unknown) 
quantities

They are therefore random 
variables
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Bayesian Inference
The Nature of Inference

Frequentist Bayesian
Does not (although it appears to) 
make statements about parameters

Makes direct probability 
statements about parameters

Interpreted in terms of long-run 
repetition

Interpreted in terms of evidence 
from the observed data
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Bayesian inference

Bayesian inference:
1. Choose probability density ݂ሺߠሻ – called the 

prior distribution that expresses our beliefs 
about a parameter ߠ before we see any data.

2. We choose a statistical model ݂ሺߠ|ݔሻ
3. After observing data ଵܺ, … , ܺ௡, we update our 

beliefs and calculate the posterior distribution 
݂ሺߠ| ଵܺ, … , ܺ௡ሻ
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Bayesian Inference
Suppose we have n independent, identically distributed 

observations X1, …, Xn.  The joint density of the data is:
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Distribution
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Bayesian Inference
What do you do with the posterior distribution?
• Use the entire distribution (can be clumsy 

sometimes)
• Get a point estimate by summarizing the center 

of the posterior – use the mean or mode
• The posterior mean is:
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Conjugate Priors

Let’s redo the first candy example except this time, 
we will put a ܽݐ݁ܤሺߙ, ሻߚ prior on ߠ.  Recall that ߠ
is the probability a candy will be cherry flavored.  
The posterior has the form:

݂ ߠ ൌ ܽݐ݁ܤ ,ߙ ߚ ൌ
Γሺߙ ൅ ሻߚ
ΓሺߙሻΓሺߚሻ ݔ

ఈିଵሺ1 െ ሻఉିଵݔ

Γ ݖ ൌ ݖ െ 1 !where

݂ ߠ ,ଵݔ … , ௡ݔ ൌ
݂ሺߠሻܮ௡ሺߠሻ

׬ ݂ ߠ ௡ܮ ߠ ߠ݀
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Conjugate Priors
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Let’s take a look at this 
term in the denominator
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Conjugate Priors

     dlc 11 )1(

This is the term in the denominator from the previous page.  It is almost a Beta 
distribution except it is missing the normalization constant in front.  

Below is the Beta distribution with alpha parameter = c +  and beta parameter 
= l + .  Since it is a known pdf, it will integrate to 1.

Let’s call the normalization constant (the expression with the Gammas) c.  The 
expression above becomes:
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Conjugate Priors
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Continuing from where we left off…
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Conjugate Priors
• A conjugate prior is a family of prior probability 

distributions with the property that the posterior also 
belongs to that family.

• eg. the conjugate prior for a Bernoulli is a Beta 
distribution

• Other useful conjugate priors:

Likelihood Conjugate Prior Posterior
Normal Normal Normal
Binomial Beta Beta
Poisson Gamma Gamma
Multinomial Dirichlet Dirichlet
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Conjugate Priors
Why are they useful?
• Since we know the form of the posterior, we can easily 

calculate statistics such as the mean.  
• For example, we know:

• Thus, the mean for the candy example above is:
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Conjugate Priors

• You can think of  and  in the posterior 
distribution as “virtual counts”

• eg. Using a uniform prior Beta(1,1), the 
mean of the posterior becomes:
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Conjugate Priors

• If we observe no data, ie. c=0, l=0, the 
posterior mean is ½, which is what we 
would expect since we have to pick 
between the two flavors of lime and cherry

• If we observe lots of data, then the c term 
in the numerator and the l+c term in the 
denominator dominate the prior
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Conjugate Priors
• The conjugate prior that is of most relevance to 

parameter estimation is the Multinomial-Dirichlet 
• Recall that a Dirichlet distribution is a 

generalization of a Beta distribution
• And a Multinomial distribution is a generalization 

of a Binomial distribution
• If a node in a Bayesian network can take 2 

values, the analysis is just like the Beta-Binomial 
example in previous slides

• If it takes more than 2 values, then you have to 
use a Multinomial-Dirichlet
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Conjugate Priors
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Multinomial

Dirichlet

Note: The parameters p1, ..., pk from the 
multinomial are now the random variables in 
the Dirichlet prior
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Conjugate Priors
Likelihood Conjugate Prior Posterior
Binomial(x | n, p) Beta(, ) Beta(x+, n-x+)
Multinomial(x1,...,xk | n, 
p1, ..., pk)

Dirichlet(p1, ..., pk | 1, ..., 
k)

Dirichlet(x1+ 1,...,xk
+ k) 
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20

Conjugate Priors

Color Type Price
Silver Sedan Low
Black Sedan Medium
Silver Pickup High
Silver Sedan Low
Red SUV High

Suppose you were asked to estimate 
P( Price =Low | Type = Sedan, Color = 
Silver).

Notice that this distribution is a 
multinomial distribution with n = 2 
(because there are 2 records with 
Color=Silver, Type=Sedan) and plow, 
pmedium, phigh corresponding to when 
Price is low, medium, and high.

Now suppose I tell you to use a 
Dirichlet prior where all the i are 1.

Estimate P( Price = Low | Color = Silver, Type = Sedan )

5
3

32
12

3) AND (#
1)Pr AND  AND (#











SedanTypeSilverColor

LowiceSedanTypeSilverColor


