Structure Learning 1

Overview of Methods

1. Constraint-based structure learning

— Based on tests for conditional independencies in
data

2. Score-based structure learning

— Optimization problem: find structure that optimizes a
score (typically using heuristic search)

3. Bayesian model averaging approaches
— Generates an ensemble of possible structures
— Can be done efficiently for special cases




Constraint-Based Approaches

» Based on variants of algorithms for
building I-maps and perfect maps

* Need some way to answer independence
querieseqg. (X LY|2)

Constraint-Based Approaches

Recall this algorithm from Section 3.4.1

Build-Minimal-I-Map
To find a minimal I-map for a distribution P:
* Pick a variable ordering
 For each variable X; in the ordering:
» Find some minimal subset U of {X, ...,
X1} to be X;'s parents in @ such that
{X L Xy, .-, X1} - U| U}




Constraint-Based Approaches

Recall this algorithm from Section 3.4.1

Build-Minimal-1-Map Problem #1: Final
To find a minimal I-map for a distribution B Suoc'e
P sensitive to the
— ordering

* Pick a variable ordering

» For each variable X; in the ordering:
» Find some minimal subset U of {X, ...,
X1} to be X;'s parents in @ skch that
{XI J‘/\{Xl’ seay Xi-l} = Ul U}

Problem #3: Lots
of subsets to
search over

Problem #2: Conditional independence
guery involves a large number of variables
— hard to estimate from empirical data

Constraint-Based Approaches

» Won't learn a single network
 Instead, we will learn an I-equivalence class

Two graph structures k; and k, are I-equivalent if
I(re1) = 1(x3)




Constraint-Based Approaches

» Will use a class Patrtially Directed Acyclic Graph
(PDAG) to represent this class

* A PDAG is an acyclic graph with both directed
and undirected edges e.qg.
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Goal: reconstruct the network that best matches the
domain without a prespecified variable ordering and using
a polynomial number of independence tests that involve a
bounded number of variables

Constraint-Based Approaches

Assumptions:
» Each node has < d parents

* Independence procedure can answer any query
involving up to 2d + 2 variables

* The underlying distribution P* is faithful to G*

Recall that faithfulness means that any
independence in the distribution P* is reflected in the
d-separation properties of the graph G*.




Learning PDAGSs

» Goal: learn a DAG G* that is a perfect map
(P-map) of distribution P

e G* is not unique: a distribution can have
many P-maps, but they are all I-equivalent
eg.(X LY |2)

@—)@—)@ Can't learn a

single network
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Learning PDAGSs

« Want to return the entire equivalence class
with some compact representation

 Theorem 3.8: two DAGs are |-equivalent if
they share the same undirected skeleton
and the same set of immoralities

« Can identify I-equivalence class by:
1. Identify the undirected skeleton
2. ldentify independence properties
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Learning PDAGSs

Identifying the undirected skeleton

* Intuition: If X and Y are adjacent in G* then we
cannot make them conditionally independent
given some set of variables U

e Suppose you do find U suchthatP £ (X L
Y | U). We call set U a witness of their
independence

» If G* has bounded in-degree d, then we do not
need to consider witness sets larger than d
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Learning PDAGSs

Procedure Build-PMap-Skeleton (
X = {X4,..., Xp}, I/ Set of random variables
P, /I Distribution over X
d /I Bound on witness set

)
Let H be the complete undirected graph over X
for X;, X; in X
Uy,x; <0
for U € Witnesses(X;, X;, H,d)
/I Consider U as a witness set for X;, X;
if P = (X; L X;|U)then
Uxi,xj «<U
Remove X; — X; from 3{
break
return (3, {Ux,x,:i,j € {1,..,n})
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Learning PDAGSs

Procedure Build-PMap-Skeleton (
X = {X4,..., Xp}, Il Set of random variables
P, /I Distribution over X
d /I Bound on witness set

) Several speedups
Let H be the complete undirg possible here e.g.
for X;, X;in X restrict size of U to be d

Uy,x; <0
for U € Witnesses(X;, X;, H,d)
/I Consider U as a witness set for X;, X;
if P = (X; L X;|U)then
Uxi,xj «<U
Remove X; — X; from 3{
break
return (3, {Ux,x;:i,j € {1,..,n})
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Learning PDAGSs

» Build-PMap-Skeleton has complexity
0(nd+2):
— Considers 0(n?) pairs
— For each pair, we perform 0((n — 2)%)
independence tests
» Note: Build-PMap-Skeleton may fail if P
does not have a P-map
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Learning PDAGSs

ldentifying Immoralities
« We have the undirected skeleton
* Need to determine edge directions

« Use immoralities to inform us about edge
directions
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Learning PDAGSs

» Consider potential immoralities in the skeleton
eg. X—-Z-Y

» A potential immorality is an immorality if and only
if Z is not in any witness set U for X and Y.

On020

e If X — Z —Y is not an immorality, then Z must be
in every witness set U.
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Learning PDAGs

Procedure Mark-Immoralities (
X ={Xy, .. Xn},
S /I Skeleton
{Uxi,x,i 1 <i,j < n} // Witnesses found by Build-PMap-Skeleton

)
K «S
for X;,X;, X, suchthatX; —X; — X, e Sand X; — X, & S
Il X; — X; — X is a potential immorality
if X; € Uy, x, then
Add the orientations X; —» X; and X; < X; to X

return ¥

Note: K has directed and undirected edges (called a chain graph or
partially directed acyclic graph) 17

Learning PDAGSs

Let G be a DAG. A chain graph X is a class PDAG
of the equivalence class of § if it shares the same

skeleton as G, and contains a directed edge X - Y
if and only if all G’ that are I-equivalent to G contain

theedge X - Y

%@ "] Represented by chain graph:
Note: this has no directed edges
@% because not all edge orientations
_ are in the equivalence class eg.

X o7 <Y 18




Learning PDAGs

Rules for orienting edges in a PDAG

&o téw

Learning PDAGSs

Procedure Build-PDAG (
X = {Xy, ..., Xp} Il A specification of the random variables
P /I Distribution of interest

)

$,{Ux,x,} < Build—PMap—Skeleton(X, P)

K < Find—Immoralities(JX, S, {UXi,Xj})

while not converged
Find a subgraph in % matching the left-hand side of a rule (Rules 1-3)
Replace the subgraph with the right-hand side of the rule

return I
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Independence Tests

How to determine independence?

 Hypothesis tests eg. with two variables X
and Y

* Null Hypothesis Hy: X and Y are
independent

 Alternate Hypothesis H;: X and Y are not
independent
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Independence Tests

» Accept / Reject the null hypothesis

» False rejection: wrongly rejecting the null
hypothesis when it is correct
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Independence Tests

Measuring deviance from the null hypothesis
eg.
» Chi-squared statistic

2
(MLx,yl - M-P(x)- P(y))
dyz(D) =x2y: M-P(x)-P(y)

 Mutual Information

1 Mx,
X,y
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Independence Tests

Rule for accepting/rejecting the null
hypothesis

_ |Accept if d(D) <t
Rae(D) = {Reject if d(D) >t
!

Threshold t determines the false rejection rate.

p —value(t) = P{D:d(D) > t}|Hy, M)

Typically, threshold t set to give p-value < 0.05
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Summary

Main problem with constraint-based
approaches: independence tests aren’t
perfect

» Threshold-dependent results

» Multiple hypothesis testing: number of
incorrect results can grow large

Leads to errors in resulting PDAG
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