
1

1

Structure Learning 1

Overview of Methods

1. Constraint-based structure learning
– Based on tests for conditional independencies in

data

2. Score-based structure learning
– Optimization problem: find structure that optimizes a

score (typically using heuristic search)

3. Bayesian model averaging approaches
– Generates an ensemble of possible structures

– Can be done efficiently for special cases

2

2

Constraint-Based Approaches

• Based on variants of algorithms for
building I-maps and perfect maps

• Need some way to answer independence
queries eg. ܺ	 ٣ ܻ 	ܼሻ

3

Constraint-Based Approaches

4

Build-Minimal-I-Map
To find a minimal I-map for a distribution P:
• Pick a variable ordering
• For each variable Xi in the ordering:

• Find some minimal subset U of {X1, …,
Xi-1} to be Xi’s parents in G such that
{Xi  {X1, …, Xi-1} - U| U}

Recall this algorithm from Section 3.4.1

3

Constraint-Based Approaches

5

Build-Minimal-I-Map
To find a minimal I-map for a distribution P:
• Pick a variable ordering
• For each variable Xi in the ordering:

• Find some minimal subset U of {X1, …,
Xi-1} to be Xi’s parents in G such that
{Xi  {X1, …, Xi-1} - U| U}

Recall this algorithm from Section 3.4.1

Problem #1: Final
structure is
sensitive to the
ordering

Problem #3: Lots
of subsets to
search overProblem #2: Conditional independence

query involves a large number of variables
– hard to estimate from empirical data

Constraint-Based Approaches

• Won’t learn a single network

• Instead, we will learn an I-equivalence class

6

Two graph structures ߢଵ and ߢଶ are I-equivalent if
ܫ ଵߢ ൌ ଶሻߢሺܫ

4

Constraint-Based Approaches

• Will use a class Partially Directed Acyclic Graph
(PDAG) to represent this class

• A PDAG is an acyclic graph with both directed
and undirected edges e.g.

7

Goal: reconstruct the network that best matches the
domain without a prespecified variable ordering and using
a polynomial number of independence tests that involve a
bounded number of variables

X Y Z

Constraint-Based Approaches

Assumptions:

• Each node has ൑	d parents

• Independence procedure can answer any query
involving up to 2d + 2 variables

• The underlying distribution ܲ∗ is faithful to ࣡∗

8

Recall that faithfulness means that any
independence in the distribution ܲ∗ is reflected in the
d-separation properties of the graph ࣡∗.

5

Learning PDAGs

• Goal: learn a DAG ࣡∗ that is a perfect map
(P-map) of distribution P

• ࣡∗ is not unique: a distribution can have
many P-maps, but they are all I-equivalent
eg. (ܺ	 ٣ ܻ	|	ܼሻ

9

X Z Y

X Z Y

X Z Y

Can’t learn a
single network

Learning PDAGs

• Want to return the entire equivalence class
with some compact representation

• Theorem 3.8: two DAGs are I-equivalent if
they share the same undirected skeleton
and the same set of immoralities

• Can identify I-equivalence class by:
1. Identify the undirected skeleton

2. Identify independence properties

10

6

Learning PDAGs

Identifying the undirected skeleton

• Intuition: If X and Y are adjacent in ࣡∗ then we
cannot make them conditionally independent
given some set of variables U

• Suppose you do find U such that ܲ	 ⊨ ሺܺ	 ٣
ሻ. We call set Uࢁ	|	ܻ a witness of their
independence

• If ࣡∗ has bounded in-degree d, then we do not
need to consider witness sets larger than d

11

Learning PDAGs

Procedure Build-PMap-Skeleton (

ࣲ ൌ ሼ ଵܺ,..., ܺ௡}, // Set of random variables

ܲ, // Distribution over ࣲ
݀	 // Bound on witness set

)

Let ࣢ be the complete undirected graph over ࣲ
for ௜ܺ, ௝ܺ in ࣲ

௑೔,௑ೕࢁ ← ∅

for ࢁ ∈ ݏ݁ݏݏ݁݊ݐܹ݅ ௜ܺ, ௝ܺ ,࣢, ݀

// Consider ܷ as a witness set for ௜ܺ, ௝ܺ

if ܲ	 ⊨ ௜ܺ 	٣ 	 ௝ܺ ሻࢁ	 then

௑೔,௑ೕࢁ ← ࢁ

Remove ௜ܺ െ ௝ܺ from ࣢

break

return ሺ࣢, ሼࢁ௑೔,௑ೕ: ݅, ݆	 ∈ 1,… , ݊ ሻ
12

7

Learning PDAGs

Procedure Build-PMap-Skeleton (

ࣲ ൌ ሼ ଵܺ,..., ܺ௡}, // Set of random variables

ܲ, // Distribution over ࣲ
݀	 // Bound on witness set

)

Let ࣢ be the complete undirected graph over ࣲ
for ௜ܺ, ௝ܺ in ࣲ

௑೔,௑ೕࢁ ← ∅

for ࢁ ∈ ݏ݁ݏݏ݁݊ݐܹ݅ ௜ܺ, ௝ܺ ,࣢, ݀

// Consider ܷ as a witness set for ௜ܺ, ௝ܺ

if ܲ	 ⊨ ௜ܺ 	٣ 	 ௝ܺ ሻࢁ	 then

௑೔,௑ೕࢁ ← ࢁ

Remove ௜ܺ െ ௝ܺ from ࣢

break

return ሺ࣢, ሼࢁ௑೔,௑ೕ: ݅, ݆	 ∈ 1,… , ݊ ሻ
13

Several speedups
possible here e.g.
restrict size of U to be d

Learning PDAGs

• Build-PMap-Skeleton has complexity
ܱ ݊ௗାଶ :
– Considers ܱሺ݊ଶሻ pairs

– For each pair, we perform ܱሺ ݊ െ 2 ௗሻ
independence tests

• Note: Build-PMap-Skeleton may fail if P
does not have a P-map

14

8

Learning PDAGs

Identifying Immoralities

• We have the undirected skeleton

• Need to determine edge directions

• Use immoralities to inform us about edge
directions

15

Learning PDAGs

• Consider potential immoralities in the skeleton
eg. ܺ െ ܼ െ ܻ

• A potential immorality is an immorality if and only
if ܼ is not in any witness set ࢁ for ܺ and ܻ.

• If ܺ െ ܼ െ ܻ is not an immorality, then ܼ must be
in every witness set ࢁ.

16

X Z Y

9

Learning PDAGs

Procedure Mark-Immoralities (

ࣲ ൌ ଵܺ, …ܺ௡ ,
ܵ // Skeleton

ሼࢁ௑೔,௑ೕ: 1 ൑ ݅, ݆ ൑ ݊ሽ // Witnesses found by Build-PMap-Skeleton

)
ࣥ ← ܵ
for ௜ܺ, ௝ܺ,ܺ௞ such that ௜ܺ െ ௝ܺ െ ܺ௞ ∈ ܵ and ௜ܺ െ ܺ௞ ∉ ܵ

// ௜ܺ െ ௝ܺ െ ܺ௞ is a potential immorality

if ௝ܺ ∉ ௑೔,௑ೖࢁ then

Add the orientations ௜ܺ → ௝ܺ and ௝ܺ ⟵ ܺ௞ to ࣥ

return ࣥ

17

Note: ࣥ has directed and undirected edges (called a chain graph or
partially directed acyclic graph)

Learning PDAGs

Let ࣡ be a DAG. A chain graph ࣥ is a class PDAG
of the equivalence class of ࣡ if it shares the same
skeleton as ࣡, and contains a directed edge ܺ	 → ܻ
if and only if all ࣡ᇱ that are I-equivalent to ࣡ contain
the edge ܺ	 → ܻ

18

X Z Y

X Z Y

X Z Y

X Z Y

Represented by chain graph:

Note: this has no directed edges
because not all edge orientations
are in the equivalence class eg.
ܺ → ܼ ← ܻ

10

Learning PDAGs

19

X Y Z

Rules for orienting edges in a PDAG

Rule 1: X Y Z

X

Y Z

Rule 2: X

Y Z

Rule 3:
X

Y1 Y2

Z

X

Y1 Y2

Z

Learning PDAGs

Procedure Build-PDAG (

ࣲ ൌ ଵܺ, … , ܺ௡ // A specification of the random variables

P // Distribution of interest

)

ܵ, ௑೔,௑ೕࢁ ← BuildെPMapെSkeletonሺࣲ, ܲሻ

ࣥ ← FindെImmoralitiesሺࣲ, ܵ, ሼࢁ௑೔,௑ೕሽ)

while not converged

Find a subgraph in ࣥ matching the left-hand side of a rule (Rules 1-3)

Replace the subgraph with the right-hand side of the rule

return ࣥ

20

11

Independence Tests

How to determine independence?

• Hypothesis tests eg. with two variables X
and Y

• Null Hypothesis	ܪ଴: X and Y are
independent

• Alternate Hypothesis ܪଵ: X and Y are not
independent

21

Independence Tests

• Accept / Reject the null hypothesis

• False rejection: wrongly rejecting the null
hypothesis when it is correct

22

12

Independence Tests

Measuring deviance from the null hypothesis
eg.

• Chi-squared statistic

݀ఞమ ࣞ ൌ෍
ܯ ,ݔ ݕ െ ܯ · ෠ܲ ݔ · ෠ܲ ݕ

ଶ

ܯ · ෠ܲ ݔ · ෠ܲሺݕሻ
௫,௬

• Mutual Information

ࡵ݀ ࣞ ൌ ௉෠ವࡵ ܺ; ܻ ൌ
1
ܯ
෍ܯ ,ݔ ݕ ݃݋݈

,ݔሾܯ ሿݕ
ܯ ݔ ሿݕሾܯ

௫,௬

23

Independence Tests

Rule for accepting/rejecting the null
hypothesis

ܴௗ,௧ ࣞ ൌ ቊ
ሺࣞሻ݀	݂݅		ݐ݌݁ܿܿܣ ൑ ݐ
݀	݂݅	ݐ݆ܴܿ݁݁ ࣞ ൐ ݐ

24

Threshold t determines the false rejection rate.

݌ െ ݁ݑ݈ܽݒ ݐ ൌ ܲሺሼࣞ: ݀ ࣞ ൐ ሻܯ,଴ܪ|ሽݐ

Typically, threshold t set to give p-value ൑ 0.05

13

Summary

Main problem with constraint-based
approaches: independence tests aren’t
perfect

• Threshold-dependent results

• Multiple hypothesis testing: number of
incorrect results can grow large

Leads to errors in resulting PDAG

25

