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Structure Learning 2

Structure Scores

• Searching for highest-scoring network 
structure is intractable

• Need to resort to heuristic search (eg. 
hillclimbing)

• Need:
1. Search space

2. Scoring function

3. Search procedure

2
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Structure Scores

1. Search space

• Start with initial state (eg. disconnected graph or 
randomly generated one)
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A

B C

Initial State

Structure Scores

1. Search space

• Move to a neighboring state by applying an 
operator:
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A

B C

Edge Addition Edge Deletion

A

B C

Edge Reversal

A

B C

Can only perform an operator if it doesn’t lead to a cycle!
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Structure Scores

2. Scoring function:

• Two general classes of scoring functions:

1. Likelihood scoring functions

2. Bayesian scoring functions

• More about this in a bit…assume we have a 
scoring function for now
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Structure Scores

3. Search procedure

• Greedy search: pick the best scoring 
neighboring state to move to

• Repeat until convergence

• Converges to a local optimum

6

Tricks for dealing with this: 
random restart, simulated 
annealing, tabu search and 
data perturbation
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Structure Scores

7

Likelihood Scores
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max , 	 :

: :

Log likelihood

Maximum likelihood estimates 
of parameters

Graph structure that 
maximizes the likelihood
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Likelihood Scores

Let be the number of samples. We use the notation 
to be the count of in the data.

Let be the empirical distribution observed in the data. Eg.

• , · ,

• ·

Note that:

• |

•
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Likelihood Scores

Mutual Information
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Likelihood Scores

Claim:
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Likelihood Scores

Proof:
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Likelihood Scores
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Note that if , ∅, then ; , 0

Likelihood Scores

What are the implications of
	 ;

14

Depends on network 
structure (because 

Parents , . 
Only need to 
maximize this.

Does not depend on 
network structure

The likelihood of a network measures how informative 
are about 
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Likelihood Scores

An alternate representation:

15

1
: , … ,

; , … , , 	 	 ,

Measures to what extent the Markov properties of the graph are 
violated in the data (fewer violations ⇒ larger score)

Does not depend on 
network structure

Depends on network 
structure

Problems with Likelihood Score

Never prefers a simpler network over a more 
complex one eg.
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X

Y

X

Y
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Problems with Likelihood Score

• Exhibits a conditional independence only if 
it holds exactly in the empirical distribution
– Due to noise, this almost never happens

• Learns a fully connected graph
– Overfits the training data and does not 

generalize well to unseen cases

• Needs a penalty for learning overly 
complex structures

17

Bayesian Scoring

18
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Bayesian Score

• Bayesian philosophy: if you are uncertainty 
about something, put a distribution over it

• In structure learning, we have uncertainty over 
the structure and the parameters

• We will have two prior distributions:

– Structure prior 

– Parameter prior |

19

Bayesian Score

20

: 	 	 log	

Recall:

| , |

Structure priorMarginal Likelihood 
(dominates the score)

“Averages” out  | , over the distribution of  . Contrast this 
with maximum likelihood which finds the that maximizes the 
likelihood of the data
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Bayesian score

• How does the Bayesian score improve over the 
likelihood score?

– By avoiding overfitting

• Likelihood score commits to a single value

• Bayesian score works with a distribution of 
and averages | , over this distribution

– Results in an expected likelihood

21

Marginal Likelihood (Single Variable case)

• Suppose we have a single binary random 
variable 

• Let the prior distribution over the 
parameters of be ,

• Let the data 1 ,… , have 1
heads and 0 tails

• Maximum likelihood value given D 

is: ·
22
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Marginal Likelihood (Single Variable case)

What about the marginal likelihood?

,

23

,1
·

0

Shorthand: let and 

Marginal Likelihood (Single Variable case)

24

Γ
Γ Γ

Γ
Γ Γ

M 1 , 0 1

⟹
Γ

Γ 1 Γ 0
1

Note:

⟹
Γ

Γ 1 Γ 0
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Marginal Likelihood (Single Variable case)

25

Γ
Γ Γ

Γ
Γ Γ

M 1 , 0 1

⟹
Γ

Γ 1 Γ 0
1

Note:

⟹
Γ

Γ 1 Γ 0

Note that the Gamma function 
is as follows:
Γ 1 1
Γ 1 Γ

ie. it is a continuous 
generalization of the factorial: 
Γ 1 !

Marginal Likelihood (Single Variable case)

26

Γ
Γ Γ

Γ

Γ 1 Γ 0

Γ
Γ

·
Γ
Γ

·
Γ
Γ

We can easily generalize to a multinomial distribution 
over the space of values , … , with a prior 

, … , :

Γ
Γ

·
Γ

Γ
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Bayesian Scoring

Global parameter independence:

Let be a Bayesian network structure with 
parameters | , … , | . 

The distribution satisfies global 
parameter independence if it has the form:

|

27

Bayesian Scoring

Local parameter independence:

Let be a variable with parents . We say that 
distribution | satisfies local parameter 
independence if:

| |

28

X Y P(Y|X)

0 0 |

0 1

1 0 |

1 1

X Y

Example: Only one of the s 
applies, depending 
on the value of x. In 
other words, the s 
don’t affect each 
other
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Bayesian Scoring

29

Now suppose there are two binary random variables X and Y. Let 
be a graph with X and Y and no edges

| , , , | ,

1. Decompose likelihood in terms of each variable

, , , | ,

2. Global Parameter Independence:	 , |
P |

X Y

Bayesian Scoring

30

, , , | ,

, | , P |  ,

, P | , 	 |  ,

, P | , 	 |  

Integral of a product of independent functions is the product of integrals:

Note: decomposes into one term for each random variable
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Bayesian Scoring

31

Now suppose there are two binary random variables X and Y and let  

⟶ be the graph below:

X Y

X P(X)

0

1

X Y P(Y|X)

0 0 |

0 1

1 0 |

1 1

Bayesian Scoring

32

Now suppose there are two binary random variables X and Y and let  

⟶ be the graph below:

X Y

⟶ , ⟶ P ⟶ ·

| , → 	 | | →

:

 |
|

·

| , → 	 | | →

:

 |
|
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Bayesian Scoring

33

Now suppose there are two binary random variables X and Y and let  

⟶ be the graph below:

X Y

⟶ , ⟶ P ⟶ ·

| , → 	 | | →

:

 |
|

·

| , → 	 | | →

:

 |
|

One term for each parameter family. 
Each term has a closed form solution

Γ
Γ

·
Γ

Γ

Bayesian Scoring

The general case: let be a network structure, and let | be a 
parameter prior satisfying global parameter independence. Then:

34

, ,
|

| |

If also satisfies local parameter independence, then

, | ,
:	|

| | |

∈
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Bayesian Scoring

If we have a Bayesian network with Dirichlet priors where 

| has hyperparameters
|
:

1, … , then

35

Γ
|

Γ
|∈

Γ
|

,

Γ
|∈

Where:

| |

Bayesian Scoring

If we have a Bayesian network with Dirichlet priors where 

| has hyperparameters
|
:

1, … , then

36

Γ
|

Γ
|∈

Γ
|

,

Γ
|∈

Where:

| |

Iterates over # of 
random variables

Iterates over # of 
instantiations of 
parents of 

Iterates over # of 
values of 
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Bayesian Scoring

If we use a Dirichlet parameter prior for all 
parameters in our network, then, because 
→ ∞ (proof omitted), we have:

37

:
2

1

# of independent parameters in 

This is the Bayesian Information Criterion (BIC) score

Bayesian Scoring

38

: :
2

1

Fit to data

This is the Bayesian Information Criterion 
(BIC) score:

Model complexity

Can also interpret this as the # of bits to encode the model and the data 
given the model (minimum description length)
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Bayesian Scoring

Things to note:

• Entropy term	 ∑ can be ignored (doesn’t depend on 
graph structure)

• Trades off fit to data and model complexity
– The stronger the dependence of a variable on its parents, the higher the 

score (grows linearly)

– The more complex the network, the lower the score (grows 
logarithmically)

• As M grows, the score pays more attention to the data fit

39

: ;
2

Bayesian Scoring

Assume that our data are generated by some distribution 
∗ for which the network ∗ is a perfect map.

We say that a scoring function is consistent if the following 
properties hold as the amount of data → ∞, with 
probability that approaches 1 (over all possible choices of 
data set ):

• The structure ∗ will maximize the score

• All structures that are not I-equivalent to ∗ will have 
strictly lower score

40
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Bayesian Scoring

• The BIC score (and the Bayesian score) is 
consistent [proof omitted]

• In practice though, the BIC score tends to 
have a very strong preference for simpler 
structures

41

Structure Priors

42

: 	 	 log	

Structure prior (stays 
constant). Only 
matters for small 
sample sizes

Grows linearly with the number of 
examples (dominates the score)

Recall that
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Structure Priors

• Typically assign uniform priors over structures

• If you can provide an informed structure prior, 
you could penalize edges in the graph:
– ∝ | | (where 1 and is the number of 

edges)

• Mathematically convenient to have structure 
prior with structure modularity:
– ∝ ∏

43

Uses local properties not global properties 
of the graph


