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Undirected Graphical Models 1
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Symmetric interactions (Examples)
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Image Segmentation (From PASCAL VOC 2011 data)

Each node in this undirected 
graphical model is a pixel / 
region

Symmetric interactions (Examples)
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Social network modeling
• Marketing
• Insider threat detection
• Fraud detection

Alice

Introduction

What about the parameters? 
• Standard CPD doesn’t work – no notion of a “parent”
• Need a more symmetric parameterization
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Nodes are variables

Edges are direct probabilistic 
interaction between variables

Markov network
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Introduction

Let be a set of random variables. We 
define a factor to be a function from 

→ . A factor is nonnegative if all 
its entries are nonnegative. 

The set of variables is called the scope of 
the factor and denoted 

Unless stated otherwise, we restrict attention to nonnegative factors
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Introduction

A

DB

C

A B ,
0 0 30
0 1 5
1 0 1
1 1 10

B C ,
0 0 100
0 1 1
1 0 1
1 1 100

C D ,
0 0 1
0 1 100
1 0 100
1 1 1

D A ,
0 0 100
0 1 1
1 0 1
1 1 100
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Introduction

A

DB

C

A B ,
0 0 30
0 1 5
1 0 1
1 1 10
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The bigger the value, the more 
likely the configuration eg. 
A = 0, B = 0 is the most likely

Think of , 	like an unnormalized joint 
distribution between A and B. This column doesn’t 
have to sum to 1

I can increase this value to make A=1 and B=1 
more likely but it is not clear how this affects the 
full joint distribution between A, B, C, and D

Introduction
Because the factors are not normalized, need to normalize 
everything at the end to produce a probability distribution. 
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Normalizing constant (also called the partition 
function). Can be difficult to compute!
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Introduction

Connections between factorization and 
independence properties

• Structure of the factors allows us to 
decompose the distribution

• ⊨ | 	iff , ,
Independence properties of the distribution 
P correspond to separation properties of 
the graph G over which P factorizes
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Parameterizations
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Parameterization

• Factors subsume (generalize) the notion 
of a joint distribution:
– A joint distribution over is a factor over 

• Factors subsume a conditional probability 
distribution (CPD)
– A CPD | is a factor over ∪ .
– A CPD is a special case of a factor that is 

normalized
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Parameterization

Let , , and be three disjoint sets of 
variables, and let , and , be 
two factors. We define the factor product

to be a factor Ψ: , , →
as follows:
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Ψ , , 	 , ,
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Parameterization

B C ,
0 0 0.5
0 1 0.7
1 0 0.1
1 1 0.2

A B ,
0 0 0.5
0 1 0.8
1 0 0.1
1 1 0
2 0 0.3
2 1 0.9

A B C , ,
0 0 0 (0.5)(0.5)=0.25
0 0 1 (0.5)(0.7)=0.35
0 1 0 (0.8)(0.1)=0.08
0 1 1 (0.8)(0.2)=0.16
1 0 0 (0.1)(0.5)=0.05
1 0 1 (0.1)(0.7)=0.07
1 1 0 (0)(0.1)=0
1 1 1 (0)(0.2)=0
2 0 0 (0.3)(0.5)=0.15
2 0 1 (0.3)(0.7)=0.21
2 1 0 (0.9)(0.1)=0.09
2 1 1 (0.9)(0.2)=0.18

Example of a factor product:
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Parameterizations

For Bayesian Networks;
• Since CPDs and joint distributions are factors
• Chain rule for BNs can be thought of as the 

product of CPD factors
• Letting , P( |Parents( ))
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, … , ,

Parameterizations
A distribution is a Gibbs distribution parameterized by a 

set of factors Φ ),…, )} if it is defined as 
follows:

, … ,
1

, … ,

where

is an unnormalized measure and

is a normalizing constant called the partition function
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Parameterizations

We say that a distribution P with  = {1(D1),…, 
K(DK)} factorizes over a Markov network H if 
each Dk (k=1, …, K) is a complete subgraph (or 
clique) of H

A complete subgraph (or clique) is a fully 
connected subgraph
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Parameterizations

The terms that you multiply together for the joint 
distribution of a Markov network are often called 
clique potentials
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Clique Potential

Confusing point: A clique potential can be made up of a product of factors. 
Suppose clique has scope A, B and C. The clique potential for could 
be , , , .

Parameterizations

A

BD

C

Cliques:

{A,B}, {B,C}, {C,D}, 
{A,D}

A

BD

C

Cliques:

{A,B,D}, {B,C,D},

{A,D},{C,D},{A,B},{B,C}{B,D}

Examples of Markov networks and their cliques
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Parameterizations

Note: every complete subgraph is a subset of 
some (maximal) clique eg.

A B A B

C

A B

CD

Because of this, we can reduce the number of 
factors in our parameterization by allowing 
factors only for maximal cliques
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Parameterizations

The maximal clique for this graph has 
scope A, B, C.  
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A B

C

You can parameterize this in two ways:

or
2. , , , , ,

1. , , , ,
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Finer-Grained Parameterization

• Markov network structure does not reveal 
whether the factors in the parameterization 
involve maximal cliques or subsets of 
these cliques

• Factor graph makes this explicit in the 
structure.
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Finer-Grained Parameterizations

A factor graph F is an undirected graph containing 
two types of nodes: 

• Variable nodes (denoted as ovals) and
• Factor nodes (denoted as squares). 
The graph only contains edges between variable 

nodes and factor nodes.

B

A C

V3

V1 V2
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Finer-Grained Parameterizations

A factor graph F is parameterized by a set of 
factors, where each factor node V is associated 
with only one factor , whose scope is the set of 
variables that are neighbors of V in the graph. 

A distribution P factorizes over F if it can be 
represented as a set of factors of this form.

24

Finer-grained Parameterization

B

A C

The induced Markov 
network

V

A

B

C

A single factor over 
all three variables

B

A C

V3

V1 V2

3 pairwise factors
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Finer-grained Parameterizations

Rather than encoding factors as complete tables 
over the scope of the factor, we can use a log-
linear model:
(D) = exp(-(D))
Where (D) = - ln (D) is an energy function (which you 

want to minimize)
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Noote: log representation makes sure the distribution is positive
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Finer-grained Parameterizations

Let D be a subset of variables. We define a 
feature f(D) to be a function from D → R.
eg. an indicator feature takes on value 1 
for some values y  Val(D) and 0 
otherwise
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Finer-grained Parameterizations

Features provide a compact way to specify certain 
types of interactions

Example: Suppose A1 and A2 can take on l
possible values a1, .., al . A1 and A2 prefer 
situations when they take on the same value, 
and have no preference otherwise. The energy 
function might take the following:
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Finer-grained Parameterizations

(example continued)
Two options for representing the factor:
• As a table, it requires l2 values
• Log-linear function in terms of a feature f(A1,A2)

that is an indicator function for the event A1=A2. 
The energy function looks like:

)(*3),( 2121 AAIAA 

We just replaced a table with a function
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Finer-grained Parameterizations

A distribution P is a log-linear model over a Markov 
network H if it is associated with:

• A set of features F = {f1(D1), …, fk(Dk)}, where 
each Di is a complete subgraph in H

• A set of weights w1, …, wk

Such that
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Finer-grained Parameterizations

3 representations of the 
parameterization of a Markov 
network:

1. Markov network: product over 
potentials on cliques

2. Factor graph: product of factors
3. Set of features: product over feature 

weights

Which is most appropriate? Depends on the nature of the problem…

Finer-grained


