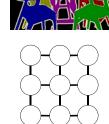


Symmetric interactions (Examples)

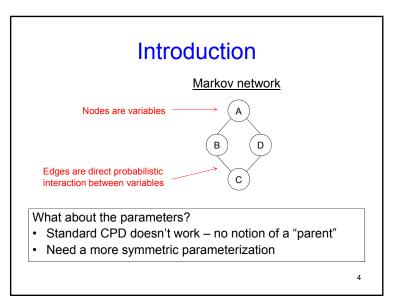
Image Segmentation (From PASCAL VOC 2011 data)

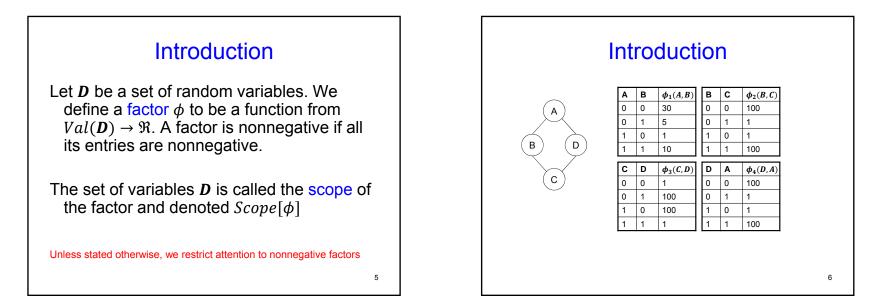
Each node in this undirected graphical model is a pixel / region

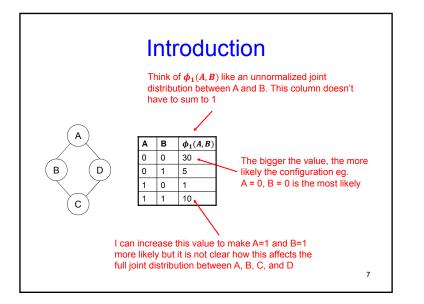


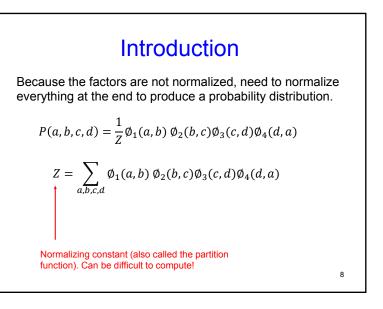
2

Symmetric interactions (Examples) Social network modeling Marketing Alice Bob Insider threat detection Fraud detection Chuck Danielle Eva Fred Henry Gus Jack Ingrid 3

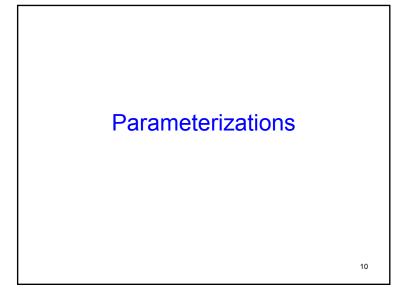








- Connections between factorization and independence properties
- Structure of the factors allows us to decompose the distribution
- *P* ⊨ (*X* ⊥ *Y*|*Z*) iff *P*(*X*) = φ₁(*X*, *Z*)φ₂(*Y*, *Z*) Independence properties of the distribution *P* correspond to separation properties of the graph *G* over which *P* factorizes



Parameterization

- Factors subsume (generalize) the notion of a joint distribution:
 - A joint distribution over **D** is a factor over **D**
- Factors subsume a conditional probability distribution (CPD)
 - A CPD P(X|U) is a factor over $\{X\} \cup U$.
 - A CPD is a special case of a factor that is normalized

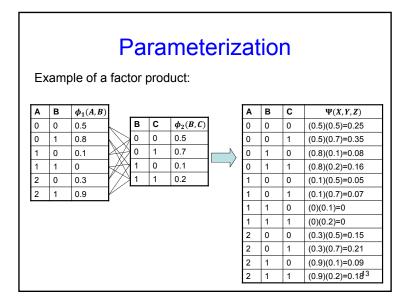
11

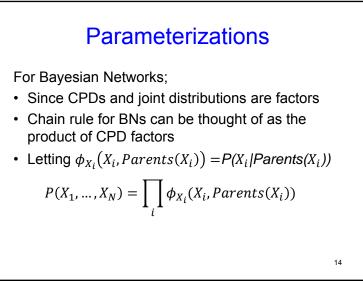
9

Parameterization

Let *X*, *Y*, and *Z* be three disjoint sets of variables, and let $\phi_1(X, Y)$ and $\phi_2(Y, Z)$ be two factors. We define the factor product $\phi_1 \times \phi_2$ to be a factor Ψ : $Val(X, Y, Z) \rightarrow \Re$ as follows:

$$\Psi(\boldsymbol{X},\boldsymbol{Y},\boldsymbol{Z}) = \phi_1(\boldsymbol{X},\boldsymbol{Y})\phi_2(\boldsymbol{Y},\boldsymbol{Z})$$





Parameterizations

A distribution P_{Φ} is a Gibbs distribution parameterized by a set of factors $\Phi = \{\phi_1(D_1), \dots, \phi_K(D_K)\}$ if it is defined as follows:

$$P_{\Phi}(X_1, \dots, X_n) = \frac{1}{Z} \tilde{P}_{\Phi}(X_1, \dots, X_n)$$

where

$$\tilde{P}_{\Phi}(X_1,\ldots,X_n) = \phi_1(\boldsymbol{D}_1) \times \phi_2(\boldsymbol{D}_2) \times \ldots \times \phi_K(\boldsymbol{D}_K)$$

is an unnormalized measure and

$$Z = \sum_{X_1, \dots, X_n} \tilde{P}_{\Phi}(X_1, \dots, X_n)$$

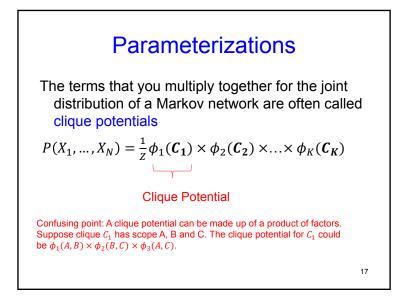
is a normalizing constant called the partition function

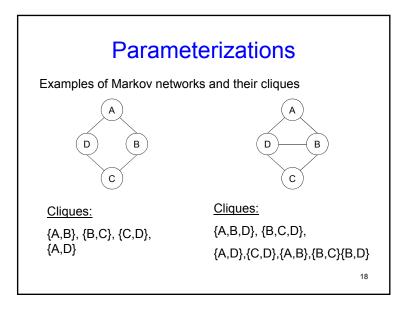
15

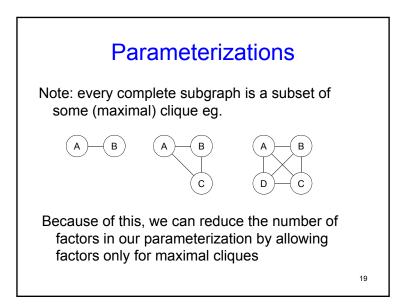
Parameterizations

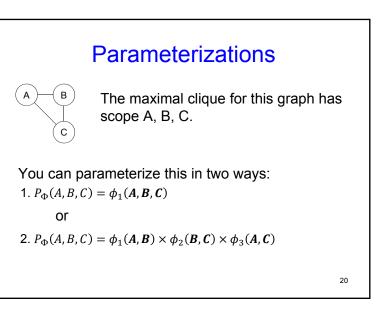
We say that a distribution P_{Φ} with $\Phi = \{\phi_1(D_1), ..., \phi_K(D_K)\}$ factorizes over a Markov network \mathcal{H} if each D_k (k=1, ..., K) is a complete subgraph (or clique) of \mathcal{H}

A complete subgraph (or clique) is a fully connected subgraph







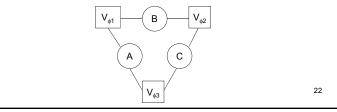


Finer-Grained Parameterization

- Markov network structure does not reveal whether the factors in the parameterization involve maximal cliques or subsets of these cliques
- Factor graph makes this explicit in the structure.

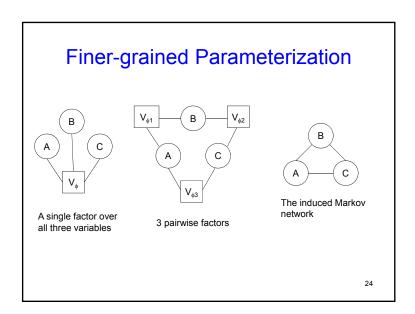
Finer-Grained Parameterizations

- A factor graph *F* is an undirected graph containing two types of nodes:
- · Variable nodes (denoted as ovals) and
- Factor nodes (denoted as squares).
- The graph only contains edges between variable nodes and factor nodes.



Finer-Grained Parameterizations

- A factor graph *F* is parameterized by a set of factors, where each factor node V_{ϕ} is associated with only one factor ϕ , whose scope is the set of variables that are neighbors of V_{ϕ} in the graph.
- A distribution *P* factorizes over *F* if it can be represented as a set of factors of this form.



Rather than encoding factors as complete tables over the scope of the factor, we can use a loglinear model:

 $\phi(\boldsymbol{D}) = \exp(-\varepsilon(\boldsymbol{D}))$

Where $\varepsilon(D) = -\ln \phi(D)$ is an energy function (which you want to minimize)

$$P(X_1,...,X_n) \propto \exp\left[-\sum_{i=1}^m \varepsilon_i(\boldsymbol{D}_i)\right]$$

Noote: log representation makes sure the distribution is positive

25

Finer-grained Parameterizations

Let **D** be a subset of variables. We define a feature f(D) to be a function from $D \rightarrow R$. eg. an indicator feature takes on value 1 for some values $y \in Val(D)$ and 0 otherwise

26

Finer-grained Parameterizations

Features provide a compact way to specify certain types of interactions

Example: Suppose A_1 and A_2 can take on I possible values a^1 , ..., a^I . A_1 and A_2 prefer situations when they take on the same value, and have no preference otherwise. The energy function might take the following:

$$\mathcal{E}(A_1, A_2) = \begin{cases} -10 & A_1 = A_2 \\ 0 & \text{otherwise} \end{cases}$$

27

Finer-grained Parameterizations

(example continued)

Two options for representing the factor:

- As a table, it requires *P* values
- Log-linear function in terms of a feature $f(A_1, A_2)$ that is an indicator function for the event $A_1 = A_2$. The energy function looks like:

$$\varepsilon(A_1, A_2) = 3*I(A_1 = A_2)$$

We just replaced a table with a function

- A distribution P is a log-linear model over a Markov network \mathcal{H} if it is associated with:
- A set of features F = {f₁(D₁), ..., f_k(D_k)}, where each D_i is a complete subgraph in H
- A set of weights w₁, ..., w_k

Such that

$$P(X_1,...,X_n) = \frac{1}{Z} \exp \left[-\sum_{i=1}^k w_i f_i(D_i)\right]$$

