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Undirected Graphical Models 2: 
Independencies
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Independencies (Bayesian Networks)

Use d-separation to read off independencies 
in a Bayesian network
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Takes a bit of effort!
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Independencies (Markov networks)

Use separation to determine independencies 
(really easy!)
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Independencies

Formally: let H be a Markov network structure, and 
let X1 – ... – Xk be a path in H. Let Z  X be a 
set of observed variables. The path X1 – ... – Xk

is active given Z if none of the Xi’s in i=1, ..., k, is 
in Z.

X1 X2 X3

Path not active if X2 is in Z and it separates X1 and X3
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Independencies

A set of nodes Z separates X and Y in H, denoted 
sepH(X; Y | Z), if there is no active path between 
any node X X and Y  Y given Z. 

We define the global independencies associated 
with H to be:

I(H) = {(X  Y | Z) : sepH(X; Y | Z)}
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Independencies

Separation is monotonic in Z ie.

If sepH(X; Y | Z) then sepH(X; Y | Z’) for any Z’  Z.
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Can’t encode non-monotonic independence relations with 
separation in a Markov network (more on this later)

Example:
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Independencies

Properties we want separation to have:
1) Soundness: i.e. Separation in Graph H 

⟺ Independence in distribution P

2) Completeness: i.e. Separation in Graph 
H finds all independences in distribution 
P

Do these properties hold?
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Soundness

Soundness: Separation in Graph H ⟺
Independence in distribution P

• ⟹ direction: true. See Theorem 4.1

• ⟸ direction: true*
*true only for positive distributions (i.e. probability of all events > 0)
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Hammersley-Clifford Theorem: Let P be a positive distribution over X, 
and H a Markov network graph over X. If H is an I-map for P, then P is 
a Gibbs distribution that factorizes over H.
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Independencies

Properties we want separation to have:
1) Soundness: i.e. Separation in Graph H 

⟺ Independence in distribution P*

2) Completeness: i.e. Separation in Graph 
H finds all independences in distribution 
P 
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Completeness

• Strong version (not true): every pair of nodes X 
and Y that are not separated in H are dependent 
in every distribution which factorizes over H

• Weaker version needed: If X and Y are not 
separated given Z in H, then X and Y are 
dependent given Z in some distribution P that 
factorizes over H.
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Independencies

Properties we want separation to have:
1) Soundness: i.e. Separation in Graph H 

⟺ Independence in distribution P*

2) Completeness: i.e. Separation in Graph 
H finds all independences in distribution 
P*
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*See fine print

*See fine print

Independencies

We had two definitions of independencies in 
Bayesian networks:

1. Global independencies
D-separation

2. Local independencies: 
(Xi  NonDescendants(Xi) | Parents(Xi))
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Independencies

We can do the same thing with Markov 
Networks:

1. Global independencies: Separation 
[I(H)]

2. “Local” independencies: 
a) Pairwise independencies [Ip(H)]

b) Local independencies (Markov Blanket) 
[Il(H)]
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Pairwise Independencies

Intuitively: when two variables are not directly 
connected, we can make them conditionally 
independent through other mediating variables

Let H be a Markov network. We define the 
pairwise independencies associated with H to 
be:
Ip(H) = {(X Y | X – {X,Y}): X—Y  H}
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Local Independencies

Markov Blanket

• Intuitively: block all influences on a node by 
conditioning on its immediate neighbors
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Grey nodes are the 
Markov blanket

Local Independencies

Markov Blanket
• Formally: for a given graph H, we define the 

Markov blanket of X in H, denoted MBH(X), to 
be the neighbors of X in H. We define the local 
independencies associated with H to be:

Il(H) = {(X  X – {X} – MBH(X) | MBH(X)) : X  X}.
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Independencies

• For general distributions: Ip(H) weaker 
than Il(H) which is weaker than I(H)

• For positive distributions: All three are 
equivalent
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