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Bayesian Networks and Markov Networks

We have now seen two types of graphical models 
for representing joint probability distributions:
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Bayesian Networks Markov Networks

Can we convert from one type to the other?

Bayesian Networks and Markov Networks

• Can a Markov network represent any Bayesian 
network? No!

• Can’t use a Markov network to represent a 
distribution corresponding a Bayesian network v-
structure
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Bayesian Networks and Markov Networks

Bayesian networks can 
represent independence 
constraints that Markov 
networks cannot

Markov networks can 
represent independence 
constraints that Bayesian 
networks cannot
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Bayesian Networks and Markov Networks

Directed Graphical Models Undirected Graphical Models

Chordal graphs 5

Bayesian Networks to Markov 
Networks
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BNs to MNs
To convert a Bayesian Network 𝐵 to a Markov 

Network 𝐻, we can think of 𝐵 as a Gibbs 
distribution with:

• Each factor 𝜙 in 𝐻 corresponds to each 
conditional probability table 𝑃 𝑋 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑋 in 
𝐵

• The scope of factor  𝜙 is 𝑋 ∪ 𝑃𝑎𝑟𝑒𝑛𝑡𝑠 𝑋
• The partition function 𝑍 1
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BNs to MNs

How do we create an undirected graph that 
is an I-map for the distribution 𝑃
represented by the BN? 

Need to moralize each factor:
• Add an edge between 𝑋 and its parents
• Add an edge between all the parents of 𝑋
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BNs to MNs
The moral graph 𝑀 𝐺 of a Bayesian network structure 𝐺

over 𝑿 is the undirected graph over 𝑿 that contains an 
undirected edge between 𝑋 and 𝑌 if: 

• There is a directed edge between them in 𝐺 (in either 
direction)

• Or X and Y are both parents of the same node
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BNs to MNs

Let 𝐺 be any Bayesian network graph. The 
moralized graph 𝑀 𝐺 is a minimal I-map 
for 𝐺. 
[See proof of Proposition 4.8 in textbook]
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BNs to MNs
• The addition of the moralizing edges to the MN 
𝐻 leads to the loss of independence information
implied by the graph structure

• Only happens if moralization adds new edges 
into the graph
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BNs to MNs

A Bayesian network 𝐺 is moral if it contains 
no immoralities ie. for any pair of variables 
𝑋, 𝑌 that share a child, there is a covering 
edge between 𝑋 and 𝑌

X

Z

Y

Covering edge

12



4

BNs to MNs

• If the directed graph 𝐺 is moral, then its 
moralized graph 𝑀 𝐺 is a perfect map of 
𝐺.

• Unfortunately, very few directed graphs 
are moral
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Markov Networks to Bayesian 
Networks
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MNs to BNs

• Much harder (conceptually and 
computationally) to find a Bayesian 
network that is a minimal I-map for a 
Markov network

• Resulting Bayesian network might have 
(many) more edges than the Markov 
network
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MNs to BNs
Example: Find a Bayesian network I-map for the 

given Markov Network
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Build-Minimal-I-Map (from Section 3.4.1):
To find a minimal I-map for a distribution P:
• Pick a variable ordering
• For each variable 𝑋 in the ordering:

• Find some minimal subset 𝑼 of 
𝑋 , … ,𝑋 to be 𝑋 ’s parents in 𝐺 such 

that 
𝑋 ⊥ 𝑋 , … ,𝑋 𝑼|𝑼

Note: 𝑋 ⊥ ∅ 𝑋 , …𝑋 is trivially true
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MNs to BNs
Example: Find a Bayesian network I-map for the 

given Markov Network
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Ordering: A,B,C,D,E,F
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MNs to BNs
Example: Find a Bayesian network I-map for the 

given Markov Network
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Ordering: A,B,C,D,E,F
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(C not  B | A), so must 
add B as parent of C
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MNs to BNs
Example: Find a Bayesian network I-map for the 

given Markov Network
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Ordering: A,B,C,D,E,F
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(D not  C | B), so must 
Add C as parent of B.
(D  A | {B,C})
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MNs to BNs
Example: Find a Bayesian network I-map for the 

given Markov Network
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Ordering: A,B,C,D,E,F
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And so on…
Notice the edges added 
which result in a set of 
triangles.
The graph is chordal (defn 
to follow)
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MNs to BNs
• Let X1—X2—X3—X4 be a loop in a graph
• A chord in the loop is an edge connecting 𝑋 and 
𝑋 for two nonconsecutive nodes 𝑋 , 𝑋 .

• An undirected graph 𝐻 is said to be chordal if 
any loop X1—X2—…—Xk—X1 for 𝐾 4 has a 
chord
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MNs to BNs

Theorem 4.10: Let 𝐻 be a Markov network 
structure, and let 𝐺 be any Bayesian 
network minimal I-map for 𝐻. Then 𝐺 can 
have no immoralities. [Proof omitted]
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MNs to BNs

Any nontriangulated loop of length at least 4 
in a Bayesian network graph necessarily 
contains an immorality.

Corollary 4.3: Let 𝐻 be a Markov network 
structure, and let 𝐺 be any minimal I-map 
for 𝐻. Then 𝐺 is necessarily chordal.
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MNs to BNs
• Turning a MN to a BN requires triangulation: adding 

enough edges to a graph to make it chordal.
• Leads to the loss of independence information
• When converting from BN→MN, the (moralizing) edges 

added are in some sense implicitly there (ie. each factor 
in the BN involves a node and its parents)

• When converting from MN→BN, we can introduce a 
large number of edges (via triangulation) which results in 
very large cliques
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Chordal Graphs

25

Chordal Graphs
Let 𝐻 be a chordal Markov network. Then 
there is a Bayesian network 𝐺 which is a 
perfect map for 𝐻 ie. 𝐼 𝐻 𝐼 𝐺

We will introduce concepts to help us sketch 
out a proof for this.
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Chordal Graphs
Basic idea:
• Show that any connected chordal Markov 

network 𝐻 can be decomposed into a clique tree
(to be defined)

• The clique tree encodes independencies in 𝐻
• These independencies can be represented in a 

Bayesian network 𝐺
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Chordal Graphs
• Let 𝐻 be a connected undirected graph
• Let 𝑪 , … ,𝑪 be the set of maximal cliques in 𝐻
• Let 𝑇 be any tree-structured graph whose nodes 

correspond to the maximal cliques 𝑪 , … ,𝑪
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Markov Network 𝐻 Clique Tree 𝑇
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Chordal Graphs

• Define the Sepset 𝑆 , 𝐶 ∩ 𝐶 (Note: the two cliques 
must be connected by an edge)

• Let 𝑾 , 𝐴 be all of the variables that appear in 
any clique on the 𝑪 side of the edge

• Let 𝑾 , 𝐷 be all of the variables that appear in 
any clique on the 𝑪 side of the edge 29

B

D

C

A ABC

BCD

Markov Network 𝐻 Clique Tree 𝑇

Let 𝐶 𝐴,𝐵,𝐶  

Let 𝐶 𝐵,𝐶,𝐷  

Chordal Graphs
We say that a tree 𝑇 is a clique tree for 𝐻 if:
• Each node corresponds to a clique in 𝐻, and 

each maximal clique in 𝐻 is a node in 𝑇
• Each sepset 𝑆 , separates 𝑊 , and 𝑊 , in 
𝐻

• Note: 𝑊 , ⊥ 𝑊 , | 𝑆 ,
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Theorem 4.12: Every undirected chordal graph 
𝐻 has a clique tree 𝑇.
[See book for proof by induction]

Chordal Graphs

How do you form a clique tree from bigger 
Markov networks?
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Pick a clique as the root. 
Then pick an ordering of 
the cliques that go out 
from the root (called a 
topological ordering) 

Chordal Graphs
Theorem 4.13: Let 𝐻 be a chordal Markov network. Then 
there is a Bayesian network 𝐺 such that 𝐼 𝐻 𝐼 𝐺 . 

The process [see full proof in book]:
• Build clique tree 𝑇 from 𝐻
• Call Build-Minimal-I-Map to get Bayesian network 𝐺
• 𝐺 (moralized Baysian network) has the same edges as 𝐻

due to sepset property 𝑊 , ⊥ 𝑊 , | 𝑆 ,

32


