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Bayesian Networks and Markov
Networks

Bayesian Networks and Markov Networks
We have now seen two types of graphical models

for representing joint probability distributions:
Bayesian Networks Markov Networks

Can we convert from one type to the other?

Bayesian Networks and Markov Networks

+ Can a Markov network represent any Bayesian
network? No!

» Can’t use a Markov network to represent a
distribution corresponding a Bayesian network v-

structure

Bayesian Networks and Markov Networks

oo

Bayesian networks can Markov networks can
represent independence represent independence
constraints that Markov constraints that Bayesian
networks cannot networks cannot
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Bayesian Networks to Markov
Networks

BNs to MNs

To convert a Bayesian Network B to a Markov
Network H, we can think of B as a Gibbs
distribution with:

* Each factor ¢y, in H corresponds to each
conditional probability table P(X;|Parents(X;)) in
B

* The scope of factor ¢y, is X; U Parents(X;)

* The partition function Z = 1

BNs to MNs

How do we create an undirected graph that
is an |I-map for the distribution Py
represented by the BN?

Need to moralize each factor:
* Add an edge between X; and its parents
» Add an edge between all the parents of X;




BNs to MNs

The moral graph M[G]of a Bayesian network structure G
over X is the undirected graph over X that contains an
undirected edge between X and Y if:

* There is a directed edge between them in G (in either
direction)

* Or Xand Y are both parents of the same node

Intelligence
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BNs to MNs

Let G be any Bayesian network graph. The
moralized graph M[(] is a minimal |-map
forG.

[See proof of Proposition 4.8 in textbook]

BNs to MNs

» The addition of the moralizing edges to the MN
H leads to the loss of independence information
implied by the graph structure

@ E (X LY)lost

Moralized

* Only happens if moralization adds new edges
into the graph

BNs to MNs

A Bayesian network G is moral if it contains
no immoralities ie. for any pair of variables
X, Y that share a child, there is a covering
edge between X and Y

Covering edge




BNs to MNs

« If the directed graph G is moral, then its
moralized graph M[(] is a perfect map of
G.

» Unfortunately, very few directed graphs
are moral

Markov Networks to Bayesian
Networks

MNs to BNs

* Much harder (conceptually and
computationally) to find a Bayesian
network that is a minimal I-map for a
Markov network

* Resulting Bayesian network might have
(many) more edges than the Markov
network

MNs to BNs

Example: Find a Bayesian network |I-map for the
given Markov Network

Build-Minimal-I-Map (from Section 3.4.1):
To find a minimal I-map for a distribution P:
« Pick a variable ordering

* For each variable X; in the ordering:
* Find some minimal subset U of

{Xy1,...,X;—1} to be X;’s parents in G such

that
° e X L{Xy,...,X;_1} — U|U}

H Note: (X; L 0|{Xy, ... X;_1}) is trivially true




MNs to BNs

Example: Find a Bayesian network I-map for the
given Markov Network

Ordering: A,B,C,D,E,F

Q)

MNs to BNs

Example: Find a Bayesian network I-map for the
given Markov Network

Ordering: A,B,C,D,E,F °

(C not L B |A), so must

add B as parent of C G’e

ORO
Q)

MNs to BNs

Example: Find a Bayesian network |I-map for the
given Markov Network

6 Ordering: A,B,C,D,E,F °
(D not L C | B), so must
Add C as parent of B.
(D LA|{B.CY '

MNs to BNs

Example: Find a Bayesian network |I-map for the
given Markov Network

a Ordering: A,B,C,D,E,F °
And so on...
Notice the edges added
which result in a set of '

triangles.
The graph is chordal (defn

ONOR 040
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MNs to BNs

» Let X,(—X,—X5—X, be aloop in a graph
» A chord in the loop is an edge connecting X; and
X; for two nonconsecutive nodes X;, X;.

» An undirected graph H is said to be chordal if
any loop X;,—X,—...—X,—X, for K > 4 has a
chord
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MNs to BNs

Theorem 4.10: Let H be a Markov network
structure, and let G be any Bayesian
network minimal I-map for H. Then G can
have no immoralities. [Proof omitted]
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MNs to BNs

Any nontriangulated loop of length at least 4
in a Bayesian network graph necessarily
contains an immorality.

Corollary 4.3: Let H be a Markov network
structure, and let G be any minimal I-map
for H. Then G is necessarily chordal.
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MNs to BNs

» Turning a MN to a BN requires triangulation: adding
enough edges to a graph to make it chordal.

* Leads to the loss of independence information

* When converting from BN—MN, the (moralizing) edges
added are in some sense implicitly there (ie. each factor
in the BN involves a node and its parents)

* When converting from MN—BN, we can introduce a
large number of edges (via triangulation) which results in
very large cliques
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Chordal Graphs
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Chordal Graphs

Let H be a chordal Markov network. Then
there is a Bayesian network G which is a
perfect map for H ie. I[(H) = 1(G)

We will introduce concepts to help us sketch
out a proof for this.

26

Chordal Graphs

Basic idea:

» Show that any connected chordal Markov
network H can be decomposed into a clique tree
(to be defined)

* The clique tree encodes independencies in H

* These independencies can be represented in a
Bayesian network G
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Chordal Graphs

» Let H be a connected undirected graph
* Let Cy, ..., Ci be the set of maximal cliques in H

* Let T be any tree-structured graph whose nodes
correspond to the maximal cliques Cy, ..., Cy,

Markov Network H Clique Tree T

o




Chordal Graphs

Markov Network H Clique Tree T

(2] >
e'e N Let, = {4,8,C)
& (eo0)

\Let ¢, = {B,C,D}

+ Define the Sepset S; , = C; n €, (Note: the two cliques
must be connected by an edge)

* Let W.(4 2y = {A} be all of the variables that appear in
any clique on the C, side of the edge

* Let W.(;1) = {D} be all of the variables that appear in
any clique on the C, side of the edge 29

Chordal Graphs

We say that a tree T is a clique tree for H if:

» Each node corresponds to a clique in H, and
each maximal clique in HisanodeinT

* Each sepset S; ; separates W_; jy and W_(; ;) in
H
*« Note: Wi jy L Weginl Sij

Theorem 4.12: Every undirected chordal graph
H has a clique tree T.

[See book for proof by induction]
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Chordal Graphs

How do you form a clique tree from bigger
Markov networks?

Pick a clique as the root.
Then pick an ordering of
the cliques that go out
from the root (called a
’ |:> @ topological ordering)
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Chordal Graphs

Theorem 4.13: Let H be a chordal Markov network. Then
there is a Bayesian network G such that I(H) = I(G).

The process [see full proof in book]:
 Build clique tree T from H
+ Call Build-Minimal-I-Map to get Bayesian network G

e G (moralized Baysian network) has the same edges as H
due to sepset property Weqjy L Weiinl Sij
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