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1

References

These notes are based on the following papers:

• Blei, D. M., Kucukelbir, A. and McAuliffe, J. D. 
(2017). Variational Inference: A Review for 
Statisticians. Journal of the American Statistical 
Association, 112:518,859-877.

• Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. 
and Saul, L. K. (1999). An Introduction to 
Variational Methods for Graphical Models. 
Machine Learning, 37, 183-233.

2



2

Introduction

MCMC

• Theoretical guarantees 
(asymptotically) of 
sampling rom the target 
density

• Computationally intensive 
but conceptually simple

• Handles multi-modal 
posterior distributions

Variational Inference

• No theoretical guarantees

• Good for big data and  
complex models

• Faster than MCMC but 
requires derivation of 
variational updates

• Can have problems with 
multi-modal posteriors
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Introduction

• Variational methods based on calculus of 
variations

• Complex problem turned to a simpler one 
by decoupling degrees of freedom in the 
original problem

• Decoupling done by extending the original 
problem with additional variational
parameters
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Intuition

We first develop some intuition about variational
methods using a simple example.

Write the log function as:
ln	 min 1

Note:

• is the variational parameter

• For each value of , we need to compute the 
minimization of .
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Intuition

Dashed lines correspond to: 
1

With different values of 
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ln	

Intercept is

1

• Varying produces a series of upper bounds:
ln 1

• Minimizing produces the exact value for ln	
• Note: ln	 is a concave function
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Intuition

Why did we write ln	 min 1 ?

• Comes from convex duality: a concave function 
can be represented by a dual function as	

min ∗ 	

Where
∗ min

• Applies to convex functions as well but you get a 
lower bound
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Intuition

min ∗
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Variational Inference

• Let be a set of observed variables (e.g. 
evidence variables)

• Let be a set of latent variables

• Given inference query 
,

• Need to compute ∑ , if is 
discrete or , if continuous 

• The denominator is typically very expensive to 
compute
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The ELBO

• Goal: choose a density which is 
the closest approximation to |

• Here is a family of densities over the 
latent variables

• Need to solve the following optimization 
problem:

∗ argmin ||
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The ELBO

|

| 	 , 	

,

,

log ,

,

11Doesn’t involve so it can be taken out of the expectation

The ELBO

|

,
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Remember that this is very hard to compute because 
,

Rewrite as:
| , −

= |

Where 
,
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The ELBO

• Because KL divergence is 0
|| 	

⇒
• is the probability of the evidence, hence this 

is an evidence lower bound (ELBO)

• Instead of minimizing the KL divergence, we 
maximize the ELBO

,
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The ELBO

Another point about 
,

log

log

||
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This is an expected likelihood. 
Places mass of on 
configurations of the latent variables 

that explain the observed data .

This makes 
resemble the prior 
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Mean Field

In the mean-field variational family, the 
latent variables are:

• Mutually independent

• Each has its own factor (and parameters) 
in the variational family
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Bayesian Mixture of Gaussians

• A Gaussian mixture model assumes there are 
Gaussians that generate the data, each with its 
own mean and variance 

• We can make this a Bayesian model by putting a 
prior on the means of the Gaussians 
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Bayesian Mixture of Gaussians

The Generative model:

• ~ , for 1,… ,

• ~ ,… , for 1,… ,

• | , ~ , 1 for 1,… ,

The joint density is:

, , | ,
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Bayesian Mixture of Gaussians

The Generative model:

• ~ , for 1,… ,

• ~ ,… , for 1,… ,

• | , ~ , 1 for 1,… ,

The joint density is:

, , | ,
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is a given 
hyperparameter

Prior for the mean of each 
mixture component

Cluster assignment that takes values 1,… , . 
Encoded as an indicator K-vector, with 0s 
everywhere except for a 1 in the position 
corresponding to the cluster 	 belongs to. 

⋮
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Bayesian Mixture of Gaussians

• Computing the evidence requires:

| ,

• This K-dimensional integral takes time to 
compute. 

• Variational Inference to the rescue!
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Bayesian Mixture of Gaussians

Joint	density:

, , | ,

Mean-field variational family:

, ; , ;

ELBO:
, , , , ,
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Bayesian Mixture of Gaussians

, ,
, , , , ,

, | , 		

, ∏ ; , ∏ ;

, ; ,

, ; , log ; , ; , ,

, ; , ; ,
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Bayesian Mixture of Gaussians

• With the ELBO, we now need to optimize the 
variational parameters 

• One way to do this is coordinate ascent 
variational inference (CAVI) (Bishop 2006)

• Works by optimizing each parameter while 
keeping the others fixed

• Need to come up with updates for , ,
• Done iteratively until ELBO converges
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Bayesian Mixture of Gaussians

For CAVI:

• Uses the complete conditional of i.e. | ,

• Optimization uses the following:
∗ ∝ exp	 , ,

• We won’t go through the derivation. See (Bishop 2006) 
for details
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This expectation is over all the other 
variational factors being fixed i.e. ∏

Bayesian Mixture of Gaussians

For Bayesian Mixture of Gaussians:

1. Compute update for mixture assignments.

2. Compute update for mixture component means 
and variances.
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Bayesian Mixture of Gaussians

1. Computing	update	for	

∗ ; ∝ exp	 , ; ,
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1/

∝ exp	 ; , ; , /2
(derivation left as an exercise)

Note: Expectation will be over ∏ ; , ∏ ;

Bayesian Mixture of Gaussians

2.	Computing	update	for	 ,

; , ∝ , ; , ,
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∑
1 ∑

1
1 ∑

This leads to update equations: (derivation left as an exercise)

Note: Expectation will be over ∏ ; , ∏ ;
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Concluding remarks

• It takes some work to derive variational
inference equations

• Generic variational updates have been 
derived for special cases e.g. when 
complete conditional is in the exponential 
family
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