Variational Inference

References

These notes are based on the following papers:

- Blei, D. M., Kucukelbir, A. and McAuliffe, J. D. (2017). Variational Inference: A Review for Statisticians. Journal of the American Statistical Association, 112:518,859-877.
- Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. and Saul, L. K. (1999). An Introduction to Variational Methods for Graphical Models. Machine Learning, 37, 183-233.

Introduction

MCMC

- Theoretical guarantees (asymptotically) of sampling rom the target density
- Computationally intensive but conceptually simple
- Handles multi-modal posterior distributions

Variational Inference

- No theoretical guarantees
- Good for big data and complex models
- Faster than MCMC but requires derivation of variational updates
- Can have problems with multi-modal posteriors

Introduction

- Variational methods based on calculus of variations
- Complex problem turned to a simpler one by decoupling degrees of freedom in the original problem
- Decoupling done by extending the original problem with additional variational parameters

Intuition

We first develop some intuition about variational methods using a simple example.
Write the log function as:

$$
\ln (x)=\min _{\lambda}\{\lambda x-\ln \lambda-1\}
$$

Note:

- λ is the variational parameter
- For each value of x, we need to compute the minimization of λ.

Intuition

Dashed lines correspond to: $y=\lambda x-\ln \lambda-1$
With different values of λ

- Varying λ produces a series of upper bounds:
$\ln (x) \leq \lambda x-\ln \lambda-1$
- Minimizing λ produces the exact value for $\ln (x)$
- Note: $\ln (x)$ is a concave function

Intuition

Why did we write $\ln (x)=\min _{\lambda}\{\lambda x-\ln \lambda-1\} ?$

- Comes from convex duality: a concave function $f(x)$ can be represented by a dual function as

$$
f(x)=\min _{\lambda}\left\{\lambda^{T} x-f^{*}(\lambda)\right\}
$$

Where

$$
f^{*}(\lambda)=\min _{x}\left\{\lambda^{T} x-f(x)\right\}
$$

- Applies to convex functions as well but you get a lower bound

Intuition

Variational Inference

- Let \boldsymbol{X} be a set of observed variables (e.g. evidence variables)
- Let \boldsymbol{Z} be a set of latent variables
- Given inference query $P(\boldsymbol{Z} \mid \boldsymbol{X})=\frac{P(\boldsymbol{X}, \boldsymbol{Z})}{P(\boldsymbol{X})}$
- Need to compute $P(\boldsymbol{X})=\sum_{\boldsymbol{Z}} P(\boldsymbol{X}, \boldsymbol{Z})$ if \boldsymbol{Z} is discrete or $\int P(\boldsymbol{X}, \boldsymbol{Z}) d \boldsymbol{Z}$ if continuous
- The denominator is typically very expensive to compute

The ELBO

- Goal: choose a density $q(z) \epsilon Q$ which is the closest approximation to $p(\boldsymbol{z} \mid \boldsymbol{x})$
- Here Q is a family of densities over the latent variables
- Need to solve the following optimization problem:

$$
q^{*}(\mathbf{z})=\underset{q(\mathbf{z}) \in Q}{\operatorname{argmin}} K L(q(\mathbf{z}) \| p(\mathbf{z} \mid \boldsymbol{x}))
$$

The ELBO

$$
\begin{aligned}
& K L(q(\mathbf{z}) \mid p(\mathbf{z} \mid \boldsymbol{x})) \\
& =\int q(\mathbf{z}) \log \frac{q(\mathbf{z})}{p(\mathbf{z} \mid \boldsymbol{x})} d \mathbf{z}=\int q(\mathbf{z}) \log \frac{q(\mathbf{z}) p(\boldsymbol{x})}{p(\boldsymbol{x}, \mathbf{z})} d \mathbf{z} \\
& =\int q(\mathbf{z})[\log q(\mathbf{z})+\log p(\boldsymbol{x})-\log p(\boldsymbol{x}, \mathbf{z})] d \mathbf{z} \\
& =\int[q(\mathbf{z}) \log q(\mathbf{z})+q(\mathbf{z}) \log p(\boldsymbol{x})-q(\mathbf{z}) \log p(\boldsymbol{x}, \mathbf{z})] d \mathbf{z} \\
& =\int q(\mathbf{z}) \log q(\mathbf{z}) d \mathbf{z}+\int q(\mathbf{z}) \log p(\boldsymbol{x}) d \mathbf{z}-\int q(\mathbf{z}) \log p(\boldsymbol{x}, \mathbf{z}) d \mathbf{z} \\
& =E_{q(\mathbf{z})}[\log q(\mathbf{z})]+E_{q(\mathbf{z})}[\log p(\boldsymbol{x})]-E_{q(\mathbf{z})}[\log p(\boldsymbol{x}, \mathbf{z})]
\end{aligned}
$$

The ELBO

$$
\begin{aligned}
& K L(q(\mathbf{z}) \| p(\mathbf{z} \mid \mathbf{x})) \\
& =E_{q(\mathbf{z})}[\log q(\mathbf{z})]-E_{q(\mathbf{z})}[\log p(\mathbf{x}, \mathbf{z})]+\log p(\boldsymbol{x})
\end{aligned}
$$

Remember that this is very hard to compute because $p(\boldsymbol{x})=\int p(\boldsymbol{x}, \mathbf{z}) d \mathbf{z}$

Rewrite as:

$$
\begin{aligned}
\log p(\boldsymbol{x}) & =K L(q(\mathbf{z}) \| p(\mathbf{z} \mid \boldsymbol{x}))+E_{q(\mathbf{z})}[\log p(\boldsymbol{x}, \mathbf{z})]-E_{q(\mathbf{z})}[\log q(\mathbf{z})] \\
& =K L(q(\mathbf{z}) \| p(\mathbf{z} \mid \boldsymbol{x}))+E L B O(q)
\end{aligned}
$$

Where

$$
E L B O(q)=E_{q(\mathbf{z})}[\log p(\boldsymbol{x}, \mathbf{z})]-E_{q(\mathbf{z})}[\log q(\mathbf{z})]
$$

The ELBO

- Because KL divergence is ≥ 0

$$
\begin{aligned}
& \log p(\boldsymbol{x})=K L(q(\mathbf{z}) \| p(\mathbf{z}))+E L B O(q) \\
& \Rightarrow \log p(\boldsymbol{x}) \geq E L B O(q)
\end{aligned}
$$

- $p(\boldsymbol{x})$ is the probability of the evidence, hence this is an evidence lower bound (ELBO)
- Instead of minimizing the KL divergence, we maximize the ELBO

$$
\operatorname{ELBO}(q)=E_{q(\mathbf{z})}[\log p(\boldsymbol{x}, \mathbf{z})]-E_{q(\mathbf{z})}[\log q(\mathbf{z})]
$$

The ELBO

Another point about $E L B O(q)$
$=E_{q(\mathbf{z})}[\log p(\boldsymbol{x}, \mathbf{z})]-E_{q(\mathbf{z})}[\log q(\mathbf{z})]$
$=E_{q(\mathbf{z})}[\log p(\boldsymbol{x} \mid \mathbf{z})]+E_{q(\mathbf{z})}[\log p(\mathbf{z})]-E_{q(\mathbf{z})}[\log q(\mathbf{z})]$
$=E_{q(\mathbf{z})}[\log p(\boldsymbol{x} \mid \mathbf{z})]+\int q(\mathbf{z}) \log p(\mathbf{z}) d \mathbf{z}-\int q(\mathbf{z}) \log q(\mathbf{z}) d \mathbf{z}$
$=E_{q(\mathbf{z})}[\log p(\boldsymbol{x} \mid \mathbf{z})]+\int q(\mathbf{z}) \log \frac{p(\mathbf{z})}{q(\mathbf{z})} d \mathbf{z}$
$=E_{q(\mathbf{z})}[\log p(\boldsymbol{x} \mid \mathbf{z})]+K L(q(\mathbf{z}) \| p(\mathbf{z}))$

This is an expected likelihood.
his makes $q(z)$
Places mass of $q(z)$ on
configurations of the latent variables resemble the prior $p(z)$
z that explain the observed data x.

Mean Field

In the mean-field variational family, the latent variables are:

- Mutually independent
- Each has its own factor (and parameters) in the variational family

$$
q(\mathbf{z})=\prod_{j=1}^{m} q_{j}\left(z_{j}\right)
$$

Bayesian Mixture of Gaussians

- A Gaussian mixture model assumes there are K Gaussians that generate the data, each with its own mean μ_{k} and variance σ_{k}

- We can make this a Bayesian model by putting a prior on the means of the K Gaussians

Bayesian Mixture of Gaussians

The Generative model:

- $\boldsymbol{\mu}_{k} \sim N\left(\mathbf{0}, \boldsymbol{\sigma}^{2}\right)$
for $k=1, \ldots, K$
- $c_{i} \sim \operatorname{Categorical}\left(\frac{1}{K}, \ldots, \frac{1}{k}\right) \quad$ for $i=1, \ldots, n$
- $x_{i} \mid c_{i}, \boldsymbol{\mu} \sim N\left(c_{i}^{T} \boldsymbol{\mu}, 1\right) \quad$ for $i=1, \ldots, n$

The joint density is:

$$
p(\boldsymbol{\mu}, c, x)=p(\boldsymbol{\mu}) \prod_{i=1}^{n} p\left(c_{i}\right) p\left(x_{i} \mid c_{i}, \boldsymbol{\mu}\right)
$$

Bayesian Mixture of Gaussians

Prior for the mean of each
mixture component
ry nervol. hyperparameter

- $\mu_{k} \sim N\left(\mathbf{0}, \boldsymbol{\sigma}^{2}\right) \quad$ for $k=1 \quad K$

Cluster assignment that takes values $1, \ldots, K$.

- c_{i} च̂ategortcat \bar{K},

Encoded as an indicator K-vector, with Os everywhere except for a 1 in the position corresponding to the cluster c_{i} belongs to.

- $x_{i} \mid c_{i}, \boldsymbol{\mu} \sim N\left(c_{i}^{T} \boldsymbol{\mu}, 1\right)$

Bayesian Mixture of Gaussians

- Computing the evidence requires:

$$
p(x)=\int p(\mu) \prod_{i=1}^{n} \sum_{c_{i}} p\left(c_{i}\right) p\left(x_{i} \mid c_{i}, \boldsymbol{\mu}\right) d \boldsymbol{\mu}
$$

- This K-dimensional integral takes $O\left(K^{n}\right)$ time to compute.
- Variational Inference to the rescue!

Bayesian Mixture of Gaussians

Joint density:

$$
p(\boldsymbol{\mu}, \boldsymbol{c}, \boldsymbol{x})=p(\boldsymbol{\mu}) \prod_{i=1}^{n} p\left(c_{i}\right) p\left(x_{i} \mid c_{i}, \boldsymbol{\mu}\right)
$$

Mean-field variational family:

$$
q(\boldsymbol{\mu}, \boldsymbol{c})=\prod_{k=1}^{K} q\left(\mu_{k} ; m_{k}, s_{k}^{2}\right) \prod_{i=1}^{n} q\left(c_{i} ; \varphi_{i}\right)
$$

ELBO:

$$
E_{q(\boldsymbol{\mu}, \boldsymbol{c})}[\log p(\boldsymbol{\mu}, \boldsymbol{c}, \boldsymbol{x})]-E_{q(\boldsymbol{\mu}, \boldsymbol{c})}[\log q(\boldsymbol{\mu}, \boldsymbol{c})]
$$

Bayesian Mixture of Gaussians

```
\(\operatorname{ELBO}\left(\boldsymbol{m}, \boldsymbol{s}^{2}, \boldsymbol{\varphi}\right)\)
\(=E_{q(\boldsymbol{\mu}, c}[\log p(\boldsymbol{\mu}, \boldsymbol{c}, \boldsymbol{x})]-E_{q(\boldsymbol{\mu}, \boldsymbol{c})}[\log q(\boldsymbol{\mu}, \boldsymbol{c})]\)
\(=E_{q(\boldsymbol{\mu}, c)}\left[\log \left(p(\boldsymbol{\mu}) \prod_{i=1}^{n} p\left(c_{i}\right) p\left(x_{i} \mid c_{i}, \boldsymbol{\mu}\right)\right)\right]\)
    \(-E_{q(\mu, c)}\left[\log \left(\prod_{k=1}^{K} q\left(\mu_{k} ; m_{k}, s_{k}^{2}\right) \prod_{i=1}^{n} q\left(c_{i} ; \varphi_{i}\right)\right)\right]\)
\(=\sum_{k=1}^{K} E_{q(\mu, c)}\left[\log p\left(\mu_{k}\right) ; m_{k}, s_{k}^{2}\right]\)
\(+\sum_{i=1}^{n}\left(E_{q(\boldsymbol{\mu}, c}\left[\log p\left(c_{i}\right) ; \varphi_{i}\right]+E_{q(\mu, c)}\left[\log p\left(x_{i} ; c_{i}, \boldsymbol{\mu}\right) ; \varphi_{i}, \boldsymbol{m}, \boldsymbol{s}^{2}\right]\right)\)
\(-\sum_{i=1}^{n} E_{q(\mu, c)}\left[\log q\left(c_{i} ; \varphi_{i}\right)\right]-\sum_{k=1}^{K} E_{q(\mu, c)}\left[\log q\left(\mu_{k} ; m_{k}, s_{k}^{2}\right)\right]\)
```


Bayesian Mixture of Gaussians

- With the ELBO, we now need to optimize the variational parameters
- One way to do this is coordinate ascent variational inference (CAVI) (Bishop 2006)
- Works by optimizing each parameter while keeping the others fixed
- Need to come up with updates for $\varphi_{i k}, m_{k}, s_{k}$
- Done iteratively until ELBO converges

Bayesian Mixture of Gaussians

For CAVI:

- Uses the complete conditional of z_{j} i.e. $p\left(z_{j} \mid \boldsymbol{z}_{-j}, \boldsymbol{x}\right)$
- Optimization uses the following:

This expectation is over all the other variational factors being fixed i.e. $\prod_{l \neq j} q_{l}\left(z_{l}\right)$

- We won't go through the derivation. See (Bishop 2006) for details

Bayesian Mixture of Gaussians

For Bayesian Mixture of Gaussians:

1. Compute update for mixture assignments.
2. Compute update for mixture component means and variances.

Bayesian Mixture of Gaussians

1. Computing update for $\varphi_{i k}$
$q^{*}\left(c_{i} ; \varphi_{i}\right) \propto \exp \{\underbrace{\log p\left(c_{i}\right)}+\underbrace{\left.E\left[\log P\left(x_{i} \mid c_{i}, \boldsymbol{\mu}\right) ; \boldsymbol{m}, \boldsymbol{s}^{2}\right]\right\}}$
$\log p\left(c_{i}\right)=-1 / K$

$\varphi_{i k} \propto \exp \left\{E\left[\mu_{k} ; m_{k}, s_{k}^{2}\right] x_{i}-E\left[\mu_{k}^{2} ; m_{k}, s_{k}^{2}\right] / 2\right\}$
(derivation left as an exercise)
Note: Expectation will be over $\prod_{k=1}^{K} q\left(\mu_{k} ; m_{k}, s_{k}^{2}\right) \prod_{j \neq i} q\left(c_{j} ; \varphi_{j}\right)$

Bayesian Mixture of Gaussians

2. Computing update for m_{k}, s_{k}
$q\left(\mu_{k} ; m_{k}, s_{k}^{2}\right) \propto \exp \left\{\log p\left(\mu_{k}\right)+\sum_{i=1}^{n} E\left[\log p\left(x_{i} \mid c_{i}, \boldsymbol{\mu}\right) ; \varphi_{i}, \boldsymbol{m}_{-k}, \boldsymbol{s}_{-k}^{2}\right]\right\}$
Note: Expectation will be over $\prod_{l \neq k} q\left(\mu_{l} ; m_{l}, s_{l}^{2}\right) \prod_{i=1}^{n} q\left(c_{i} ; \varphi_{i}\right)$
This leads to update equations: (derivation left as an exercise)

$$
\begin{aligned}
& m_{k}=\frac{\sum_{i} \varphi_{i k} x_{i}}{\frac{1}{\sigma^{2}}+\sum_{i} \varphi_{i k}} \\
& s_{k}^{2}=\frac{1}{\frac{1}{\sigma^{2}}+\sum_{i} \varphi_{i k}}
\end{aligned}
$$

Concluding remarks

- It takes some work to derive variational inference equations
- Generic variational updates have been derived for special cases e.g. when complete conditional is in the exponential family

