Week 5, Lecture 1

Reinforcement Learning

Announcements:
HW 3 due on 11/5 at NOON

Suggested reading:
RL survey paper (Kaelbing)
Chapters 1-3 in Reinforcement Learning (Sutton and Barto)

(Lecture notes based on “Reinforcement Learning”, Sutton and Barto, 1998)
- The Reinforcement Learning Concept
- N-armed Bandit Problem
- Value Functions
- Markov Decision Processes

- Monte Carlo Methods
- Sarsa Learning
- Q-Learning
Reinforcement Learning Concept

- Learn from interactions with the environment
 - Take action
 - Receive feedback from the environment
 - Modify your behavior
 - Achieve some goal

- Examples:
 - Baby playing
 o Connection to the environment guides sensory input/output
 - Driving a car
 o Learn from interaction
• What if reward is not immediate?
 – Reward/value for sequences of actions
 – How do I assign/blame to sequences of actions

• Do I choose best reward?
 – What about potential for better reward of unexplored action
 – Exploration/Exploitation
 ○ Explore: try a new action
 ○ Exploit: repeat (so far) best action
Agent Environment Interaction in RL

\[s_t \xrightarrow{a_t} s_{t+1}, r_t \]

Kagan Tumer
Oregon State University
Agent Environment Interaction in RL

\[S_t \times a_t \rightarrow S_{t+1}, r_t \]

Policy, \(\pi_t \): map states to probabilities of taking actions:

\[\pi_t(s,a) = P(a_t = a \mid s_t = s) \]

N-Armed Bandit

- Think multiple armed slot machine

 - N actions
 - Each slot has a reward (randomly chosen from a distribution)
 - Aim: maximize long term reward
 - Which arm to pull?
• Think multiple armed slot machine

- N actions
- Each slot has a reward (randomly chosen from a distribution)
- Aim: maximize long term reward
 - Which arm to pull?

- Actions: pick an arm
- Action-value: Long term payoff of a particular action
- Immediate reward: reward of this time step

Let’s say the actual value of an action is $Q'(a)$
If action a has been sampled k_a times
 - The estimate at time step t is $Q_t(a)$:
• Let’s say the actual value of an action is $Q^*(a)$
• If action a has been sampled k_a times
 — The estimate at time step t is $Q_t(a)$:

$$Q_t(a) = \frac{r_1 + r_2 + r_2 + \cdots + r_{k_a}}{k_a}$$

— By the law of large numbers

$$\lim_{t \to \infty} Q_t(a) \to Q^*(a)$$
Computing Q values

• For large values of t:
 – Need to keep all values in memory.
 – How about we do this incrementally?

$$Q_{k+1} = \frac{r_1 + r_2 + r_3 + \cdots + r_{k+1}}{k+1}$$
$$= \frac{1}{k+1} \left(r_{k+1} + \sum_{i=1}^{k} r_i \right)$$

$$Q_{k+1} = \frac{r_1 + r_2 + r_3 + \cdots + r_{k+1}}{k+1}$$
$$= \frac{1}{k+1} \left(r_{k+1} + \sum_{i=1}^{k} r_i \right)$$

$$= \frac{1}{k+1} \left(r_{k+1} + kQ_k \right)$$
Computing Q values

• For large values of t:
 – Need to keep all values in memory.
 – How about we do this incrementally?

 – Q_{k+1}: average at k+1
 – Q_k: average after k

\[Q_{k+1} = \frac{r_1 + r_2 + r_3 + \cdots + r_{k+1}}{k+1} \]

\[= \frac{1}{k+1} \left(r_{k+1} + \sum_{i=1}^{k} r_i \right) \]

\[= \frac{1}{k+1} \left(r_{k+1} + kQ_k \right) \]

\[= \frac{1}{k+1} \left(r_{k+1} + kQ_k + Q_k - Q_k \right) \]

\[= \frac{1}{k+1} \left(r_{k+1} + (k + 1)Q_k - Q_k \right) \]
Summary

- **Result:**

\[
Q_{k+1} = Q_k + \frac{1}{k+1} (r_{k+1} - Q_k)
\]

- **Key Reinforcement Learning Concept:**

\[
NewEstimate \leftarrow OldEstimate + \text{Stepsize} \ (Target - OldEstimate)
\]

What if process is non-stationary?

- **How about a fixed “stepsize”:**

\[
Q_{k+1} = Q_k + \alpha (r_{k+1} - Q_k)
\]
What if process is non-stationary?

• How about a fixed “stepsize”:

\[Q_{k+1} = Q_k + \alpha(r_{k+1} - Q_k) \]

• Impact:
 – New observations count more
 – Slowly forget old info
 – Track non-stationary process

Example: N-Armed Bandit

• Given Q-values at time t:

| 0.1 | 0.4 | 0 | 0.05 | 0.1 | 0 | 0.05 | 0.1 | 0 | 0.2 |

 – Greedy selection:
 o Action 2 (highest Q value)

 – \(\varepsilon \)-greedy selection:
 o Action 2 with probability \((1-\varepsilon)\)
 o Another action with probability \(\varepsilon\)

 – Softmax:
 o Each action with probability based on it’s Q-value
Example: N-Armed Bandit, Softmax

- Given Q-values at time t:

| 0.1 | 0.4 | 0 | 0.05 | 0.1 | 0 | 0.05 | 0.1 | 0 | 0.2 |

- Softmax:
 - Select each action with probability $p_t(a)$ based on:
 - Temperature τ
 - The Q-value of that action at that time step
 $$p_t(a) = \frac{\exp(Q_t(a)/\tau)}{\sum_b \exp(Q_t(b)/\tau)}$$
 - If $\tau \rightarrow 0$, then greedy selection (highest Q value has probability 1)
 - If $\tau \rightarrow \infty$, then $p(a) = 1/n$ for all actions

Initial Values?

- How do we start?
- What are initial Q values?
 - Random
 - Zero
 - Optimistic
 - Encourage exploration of actions not yet taken

Kagan Tumer
Oregon State University
Rewards and Time Horizons

- **Maximize reward**
 - What does this really mean?
 - Maximize expected reward
 - Simplest case: sum of rewards:
 \[R_t = r_{t+1} + r_{t+2} + r_{t+3} + \cdots + r_T \]
 - Makes sense when there is a natural final step \(T \).
 - Episodic task:
 - Break learning into episodes of \(T \) steps.
 - Example: Play a game

Rewards and time horizons

- **What if there is no final time \(T \)?**
 - Maximize discounted sum of rewards
 \[R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots + \gamma^{T-t-1} r_T \]
 \[= \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \]
 - A reward received \(k \) step in the future is worth only \(\lambda^{k-1} \) times what it would be worth now
 - \(\lambda < 1 \) means the infinite sum has a finite value as long each reward is bounded
 - \(\lambda = 0 \) means agent is myopic: care only about immediate rewards

Kagan Tumer
Oregon State University
Markov property:

- A state that retains all the information relevant to future actions and rewards is said to be Markov, or to have the Markov property.

- Key: How you got to a state doesn’t matter.

- Example:
 - Chess board: all relevant info is there

- Important in Reinforcement Learning because decisions and values are based on state

Markov property depends on representation of problem, not the problem

- Example:
 - Pole balancing
 - State: location and velocity of pole tip

 - State: Right, left, middle right, middle left
Markov Property

- Markov property depends on representation of problem, not the problem

- Example:
 - Pole balancing
 - State: location and velocity of pole tip
 - Markov (as an approximation)
 - State: Right, left, middle right, middle left
 - Not Markov

Reinforcement Learning (part 2)

Week 5, Lecture 2

Reinforcement Learning

Announcements:
HW 3 due on 11/5 at NOON
Midterm Exam 11/8

Suggested reading:
Chapters 5-6 in Reinforcement Learning (Sutton and Barto)

(Lecture notes based on “Reinforcement Learning”, Sutton and Barto, 1998)
Markov Decision Processes

- **Markov Decision Process (MDP)**

- **Finite MDP (finite number of states) defined by:**
 - Set of states S
 - Set of actions A
 - Transition probabilities
 $$P_{ss'}^a = \Pr \{ s_{t+1} = s' | s_t = s ; a_t = a \}$$
 - Rewards
 $$R_{ss'}^a = \mathbb{E} [r_t | s_t = s ; a_t = a ; s_{t+1} = s']$$
 - Transition probabilities and Rewards fully specify an MDP

Policy vs. Value Functions

- We have a chicken and egg problem:
 - Need policy to evaluate value function
 - Need values to refine policy
 - Let’s focus on value functions first
• Value Function for policy π:

$$V^\pi(s) = E^\pi(R_t \mid s_t = s)$$

• Action-Value Function for policy π:

$$Q^\pi(s,a) = E^\pi(R_t \mid s_t = s, a_t = a)$$
• Value Function can be estimated from experience
 — Average rewards received so far

• Called *Monte Carlo methods*:
 — Averaging over random samples.
 — If there are many states, you may not be able to keep averages for all the states.
 — Instead use parametrized functions $V(s)$ and $Q(s)$, and update the parameters of those functions.

Optimal Value Functions

• Value Functions depend on policy.

• Optimal value function is based on optimal policy

• Policy π is optimal if its expected return is higher than all other policies π':
 $$\pi \succeq \pi' \iff V^\pi(s) \geq V^{\pi'}(s) \quad \forall s \in S$$

• Denote optimal policy by π^*
Optimal Value Functions

- Optimal state value function:
 \[
 V^*(s) = \max_{\pi} V^\pi(s)
 \]

- Optimal action-value function
 \[
 Q^*(s,a) = \max_{\pi} Q^\pi(s,a)
 \]

Policy Iteration

- Policy evaluation
 - Find \(V^\pi \) for policy \(\pi \)
 (compute value of each state)

- Policy improvement
 - Pick new action \(a \) (not in policy) and then follow policy
 - This is new policy \(\pi' \)

- Back to policy evaluation
 - Find \(V^{\pi'} \) for policy \(\pi' \)
• Policy evaluation requires multiple sweeps through the state space and can be expensive/slow

• Value Iteration:
 – Policy improvement
 o Pick new action a (not in policy) and then follow policy
 o This is new policy π'
 – Policy evaluation for one sweep
 o Find $V^{\pi'}$ for policy π'

Policy Iteration Example: Grid world

– Policy:
 o If you are next to goal, go to goal
 o If you are not next to goal, go up
 o If you can’t go up, go right.
Policy Iteration Example

- Policy:
 - If you are next to goal, go to goal
 - If you are not next to goal, go up
 - if you can’t go up, go right.

- Policy

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>G</td>
</tr>
</tbody>
</table>

Policy Evaluation (Values):

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>
Policy Iteration Example

Is this policy optimal?

```
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>↓</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>→</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>
```

```
4 5 6 7 8 9
3 4 5 6 9 10
2 3 4 5 8 9
```

Not an optimal policy

```
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>→</td>
<td>↓</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>→</td>
</tr>
<tr>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
</tbody>
</table>
```

```
4 5 6 7 8 9
3 4 5 6 9 10
2 3 4 5 8 9
```

Policy improvement
- Middle box: Go right

Kagan Tumer
Oregon State University
Policy Iteration Example

- Not an optimal policy

- Policy improvement
 - Middle box: Go right

Kagan Tumer
Oregon State University

Policy Evaluation:

Kagan Tumer
Oregon State University
Monte Carlo Policy Evaluation

Initialize:

\(\pi : \) Policy to be evaluated
\(V : \) a state value function

Repeat:

Use \(\pi \) for an episode (\(t \) in an interval \((0, T) \))
For each state \(s \) observed in episode:

Compute Rewards \(R_t(s) \) for each state

\[V(s) = \text{average}(R_t(s)) \]

Concerns with Monte Carlo Updates

- Recall Value update:

\[V(s_t) \leftarrow V(s_t) + \alpha(r(s_t) - V(s_t)) \]

- Need to wait till you get \(r \)

- What if you have a long sequence of actions?
Concerns with Monte Carlo Updates

- Recall Value update:

\[V(s_t) \leftarrow V(s_t) + \alpha(r(s_t) - V(s_t)) \]

- Need to wait till you get \(r \)

- What if you have a long sequence of actions?

- Replace \(r \) with an estimate

Temporal Difference Learning

- Recall Value update:

\[V(s_t) \leftarrow V(s_t) + \alpha(r(s_t) - V(s_t)) \]
Temporal Difference Learning

- Recall Value update:

\[V(s_t) \leftarrow V(s_t) + \alpha (r(s_t) - V(s_t)) \]

\[r(s_t) + \gamma V(s_{t+1}) \]

Actual Reward \hspace{1cm} Estimate of Reward

- Temporal difference learning

\[V(s_t) \leftarrow V(s_t) + \alpha ((r(s_t) + \gamma V(s_{t+1})) - V(s_t)) \]

Kagan Tumer
Oregon State University
Example of Temporal Difference Learning

- Two state system
 - A and B
 - Observed sequence of actions, rewards and transitions:
 - A, 0, B, 0
 - B, 1
 - B, 1
 - B, 1
 - B, 0
 - B, 1
 - B, 1
 - B, 1
Example of Temporal Difference Learning

- What are the Values of states A and B?

 - Monte Carlo estimate:

Kagan Tumer
Oregon State University
Example of Temporal Difference Learning

- What are the Values of states A and B?
 - Monte Carlo estimate:
 - $V(A) = 0$
 - $V(B) = (0 + 1 + 1 + 0 + 1 + 1 + 1 + 1) / 8 = .75$

 TD estimate:
Example of Temporal Difference Learning

- What are the Values of states A and B?
 - Monte Carlo estimate:
 - \(V(A) = 0 \)
 - \(V(B) = (0 + 1 + 1 + 0 + 1 + 1 + 1 + 1 + 1) / 8 = .75 \)
 - TD estimate:
 - \(V(B) = .75 \)
 - \(V(A) = .75 \) (A leads to B EVERY TIME)

Example of Temporal Difference Learning

- What are the Values of states A and B?
 - Monte Carlo estimate:
 - \(V(A) = 0 \)
 - \(V(B) = (0 + 1 + 1 + 0 + 1 + 1 + 1 + 1 + 1) / 8 = .75 \)
 - TD estimate:
 - \(V(B) = .75 \)
 - \(V(A) = .75 \) (A leads to B EVERYTIME)
 - TD(\(\lambda \)) estimate (take \(\lambda = .9 \)):
Example of Temporal Difference Learning

- What are the Values of states A and B?

 - Monte Carlo estimate:
 - \(V(A) = 0 \)
 - \(V(B) = \frac{0 + 1 + 1 + 1 + 0 + 1 + 1 + 1 + 1}{8} = .75 \)

 - TD estimate:
 - \(V(B) = .75 \)
 - \(V(A) = .75 \) (A leads to B EVERYTIME)

 - TD(\(\lambda \)) estimate (take \(\lambda = .9 \)):
 - \(V(B) = .75 \)
 - \(V(A) = .675 \) (discount reward because it is still uncertain)

Temporal Difference vs. Monte Carlo

- TD learns from guesses
 - Bootstrap learning

- No need for model of:
 - Environment
 - Reward
 - Transition probability

- Online implementation
 - No need to wait till the end
Sarsa Learning

- Idea: TD with (state,action) pairs rather than state alone

- Why:
 - Some states may have good and bad actions.
 - Let’s not discard good actions because of potential to take a bad action.

- Consider the following landscape:

 ![Diagram of a landscape with rewards: 10, -100, and 20.]

 If you start in region with reward of 10, you will not get to region with reward of 20.

 Why?
 - The penalty of falling off is too high
 - Each state on that bridge will have a negative value

Kagan Tumer
Oregon State University
• If you start in region with reward of 10, you will not get to region with reward of 20.

• Why?
 – The penalty of falling off is too high
 – Each state on that bridge will have a negative value
• If you start in region with reward of 10, you will not get to region with reward of 20.

• Why?
 – The penalty of falling off is too high
 – Each state on that bridge will have a negative value

• Value $V(s)$ is low.
• What about s,a pairs?

• $Q(s,a_1) = -100$
• $Q(s,a_6) = -100$
• $Q(s,a_3) = positive$

• Q values for state-action pairs:

• Sarsa learning is temporal difference extended to s,a:

$$Q(s_t,a_t) \leftarrow Q(s_t,a_t) + \alpha \left(r(s_t,a_t) + \gamma \, Q(s_{t+1},a_{t+1}) - Q(s_t,a_t) \right)$$
Sarsa Learning

- Q values for state-action pairs:

- Sarsa learning is temporal difference extended to s,a:

\[
Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r(s_t, a_t) + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right)
\]

NewEstimate ← OldEstimate + Stepsize (Target – OldEstimate)
Q-Learning

- What if we update Q values without using policy?

- Q-Learning:

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r(s_t, a_t) + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right) \]

Actual Reward \hspace{1cm} Estimate of reward

Kagan Tumer Oregon State University
Q-Learning

- What if we update Q values without using policy?

- Q-Learning:

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r(s_t, a_t) + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right) \]

- Policy independent
 - Q update is based on best possible move
 - Q update does not depend on action taken

Kagan Tumer
Oregon State University

Questions?