ME 456: Intelligent Robotics

Week 8, Lecture 2
Multi-Robot Coordination

Announcements:

HW 4 due on 11/25
No class on 11/26

Motivation

Towards a Swarm of Nano Quadrotors

Alex Kushleyev, Daniel Mellinger, and Vijay Kumar
GRASP Lab, University of Pennsylvania
And Another One

Multiple Robot Systems

- Context, motivation
- Multiagent Systems
- Application to Robotics

Pay close attention to
what the robots see and know
where the computation is taking place
Multiple Robots: Motivations

• Exploration in hazardous environments
 - Under water
 - On distant planets
 - Inside damaged buildings

• Tasks beyond the limits of single robots
 - Cooperative lifting
 - Assembling large complex structures

• Tasks that can be completed more rapidly with multiple robots
 - Collecting trash in a large office building
 - Searching for mines

• Distributed sensing (thousands of sensors)
 - Studying complex ecosystems (tree tops)
 - Detecting temperature changes in the ocean

Historical Notes

• Electromechanical tortoises, 1950, W. G. Walter
 - Vacuum tube technology
 - Moved toward a light when there was a light

• Multiple manipulators, 1980s
 - Two arms grasp the same object
 - Actions of one robot arm constrain the actions of the other

• Multiple manipulators part 2, 90s and beyond
 - Mobile robots grasp an object without grasping (Stanford)
 - Moving a sofa
 - Box pushing

• Behavior based robots, Mataric
• Robocup, 1998 onward
Control issues

- Centralized and hierarchical
 - Army
 - Factory
 - Advantage: well defined
 - Disadvantage: no redundancy

- Decentralized and local control
 - Ants
 - Advantage: fault tolerant, role redistribution
 - Disadvantage: difficult to control
Centralized Control

• Applicable when the controllers can be placed in a position to observe and communicate with all robots

• Useful when:
 – Individual robots would have to be larger than practical
 – Overall positional sensing is limited
 – Manufacturing costs are high

• Example: Warehouse applications
 – Electronic assembly using robots

Distributed Control

• Applicable when the robots will need to take independent actions

• Useful when:
 – Separation in space
 – Time lag
 – Redundancy is relevant
 – Cost of single point of failure outweights cost of robots

• Example: Space exploration
 – Planetary exploration rovers
Communication among Robots

- Point to point communication
 - Individual robots communicate with one another
 - Expensive (power, computation)
 - Information overload

- Broadcast
 - Robots broadcast information
 - Only robots within a range receive broadcast
 - Broadcaster may not know who received information

- Communication via the environment
 - Messages implicit
 - Turn of a light after reaching it
 - Leave trail on the path

Robot Soccer

- Simulation League
 - 2D
 - 3D
- Small size robot league (18 cm, 5 per team)
- Middle size robot league (50 cm, 4 per team)
- Standard size robot
 - Identical platforms (Software competition)
 - Was four legged competition in previous case
- Humanoid league
 - Currently: penalty kick, 2 vs. 2

By the year 2050, develop a team of fully autonomous humanoid robots that can win against the human world soccer champion team.
Multiple Robot Systems

• Context, motivation

• Multiagent Systems

• Application to Robotics

Multi-Robot Coordination

• Consider a large multiagent system where
 - Each robot has a *private objective* it is trying to optimize; and
 - There is a *system objective* function measuring the full system’s performance

• Key Questions:
 - *How to set robot objective functions?*
 - *How to update them (team formation)?*
 - *How to modify them to changing objectives (reconfiguration)?*
 - *What happens when robots can’t compute those objectives?*
 - *What happens when information is missing?*
 - *What happens when some robots start to fail?*
Analogy: A company

- Full System
- System objective
- Agents
- Agent objectives

Company

Valuation of company

Employees

Compensation packages

- Design problem (faced by the board):
 - How to set/modify compensation packages (agent objectives) of the employees to increase valuation of company (system objective)
 - Salary
 - bonuses
 - Benefits
 - Stock options
 - Note: Board does not tell each individual what to do. They set the “incentive packages” for employees (including the CEO).
Key Concepts for Coordinated MAS

- **Factoredness**: Degree to which an agent’s objective is “aligned” with the system objective
 - e.g. stock options are factored w.r.t. company valuation.

- **Learnability**: Based on sensitivity of an agent’s private objective to changes in its state (signal-to-noise).
 - e.g., performance bonuses increase learnability of agent’s objective

- Interesting question: If you could, would you want everyone’s objective to be valuation of company?
 - Factored, yes; but what about learnability?

Nomenclature

- z: State of full system
- z_i: State of agent i
- z_{-i}: State of full system, except agent i
- c_i: Fixed vector (independent of agent i)
- $z_i + c_i$: Full state with “counterfactual” agent i
- $G(z)$: Reward/Objective for full system
- $g_i(z)$: Reward/Objective for agent i
Factoredness

Factoredness: Degree to which an agent’s objective function is “aligned” with the system objective

\[
F_{g_i} = \sum_{z'} u[((g_i(z) - g_i(z'))(G(z) - G(z'))] \sum_{z'} 1
\]
\[
(z'_{-i} = z_{-i})
\]

For continuous states:

\[
F_{g_i} = \int_z \int_{z'} u[(g_i(z) - g_i(z'))(G(z) - G(z'))] dz' dz
\]

\[
\int_z \int_{z'} dz' dz
\]

Factoredness

Factoredness: Degree to which an agent’s objective function is “aligned” with the system objective

\[
F_{g_i} = \sum_{z'} u[((g_i(z) - g_i(z'))(G(z) - G(z'))] \sum_{z'} 1
\]
\[
(z'_{-i} = z_{-i})
\]

\[
\boxed{F_{g_i} = \text{Actions of } i \text{ that improve/deteriorate } g, \text{AND } G \text{ All actions of } i}
\]
Learnability

Learnability: Degree to which an agent’s objective function is sensitive to its own actions, as opposed to the "background" noise of other agents’ actions

\[L(g_i, z, z') = \frac{\| g_i(z) - g_i(z - z_i + z'_i) \|}{\| g_i(z) - g_i(z'_i - z_i + z_i) \|} \]

\[L(g_i, z) = \frac{\sum_{z'} L(g_i, z, z')}{\sum_{z'} 1} \]

\[\Delta g_i = \frac{\text{Change in } g_i \text{ as a result of } i' \text{'s actions}}{\text{Change in } g_i \text{ as a result of other agents' actions}} \]

General Solution

- To get agent objective with high factoredness and learnability, start with:

\[g_i(z) = G(z) - G(z_{-i} + c_i) \]

- If G differentiable, then:

\[\frac{\partial G(z_{-i} + c_i)}{\partial z_i} = 0 \]

\[\frac{\partial g_i(z)}{\partial z_i} = \frac{\partial G(z)}{\partial z_i} \]
Analogy: A company

- Full System
- System objective
- Agents
- Agent objectives
- Company
- Valuation of company
- Employees
- Compensation packages

- Give every employee a “difference objective”

- What’s good for the employee is good for the company
 - Stock options vesting at particular times??

- How to tune the learnability of \(g_i(z) \)?

How about Learnability

- Two examples for \(c_i \):

 - \(c_i = 0 \)

 \[
 g_i(Z) = G(Z) - G(Z_{-i})
 \]

 “world without me”

 - \(c_i = E[z_i] \)

 \[
 g_i(Z) = G(Z) - G(Z_{-i} + E[z_i])
 \]

 “world with average me”
Analogy: A company

- Full System \leftrightarrow \text{Company}
- System objective \leftrightarrow \text{Valuation of company}
- Agents \leftrightarrow \text{Employees}
- Agent objectives \leftrightarrow \text{Compensation packages}

- Give every employee a “difference objective”
- Make sure the employee can measure his/her impact
 - Stock options vesting at particular times??
 - Sliding scale of stock options based on impact of product??

Research Issues:

- In general agents may not be able to compute g:
 - Limited Observability
 - Restricted Communication
 - Temporal separation
 - Spatial separation
 - Limited Computation

- Solutions:
 - Estimate missing information
 - Leverage local information
 - Approximate G or z
 - Trade-off factoredness vs. learnability
Multiple Robot Systems

- Context, motivation
- Multiagent Systems
- Application to Robotics

Recall: Rover Coordination

- Rovers observe points of interest (POIs)
 - POIs vary in value, time and place
 - Get more information closer to POI
 - Only primary observation counts
- Learning problem
 - Rovers learn in single trial (non-episodic)
 - Dynamic: POIs appear/disappear
 - Rovers reset at regular intervals (episodic)
 - Static: POIs the same in each episode
 - Dynamic: POIs different in each episode

\[
G = \sum_i \sum_j \min \left[V_j \delta(L_{j,i}, L_{i,i}) \right] \\
\delta(x, y) = \min \{ ||x - y||^2, d^2 \}
\]
Challenges

• How to design an adaptive control mechanism for problems with:
 - Continuous state spaces
 • Need to generalize
 - Dynamic environment
 • Need to learn sensor to actions mapping
Challenges

• How to design an adaptive control mechanism for problems with:
 - Continuous state spaces
 - Need to generalize
 - Dynamic environment
 - Need to learn sensor to actions mapping
 - Noisy sensors/actuators
 - Need to be robust
 - Limited communication/observation
 - Need to use local information effectively
Challenges

• How to design an adaptive control mechanism for problems with:
 • Continuous state spaces
 • Need to generalize
 • Dynamic environment
 • Need to learn sensor to actions mapping
 • Noisy sensors/actuators
 • Need to be robust
 • Limited communication/observation
 • Need to use local information effectively
 • Multiple agents to coordinate
 • Collective action needs to optimize system objective

Recall: Robot Control

• Robots observe environment through some sensors
• Sensors are inputed into a neural network
• Output of neural network determines direction/velocity of rover
Recall: Rover Control

1. At $t=0$ initialize $N=10$ controllers
2. Pick a controller using e-greedy alg ($e=.1$)
3. Randomly modify controller
4. Use controller on this agent for 15 steps
5. Evaluate controller performance
6. Re-insert controller into pool
7. Remove worst controller from pool
8. Go to step 2
Objective Functions

\[G = \sum_t \sum_j \frac{V_j}{\min_i \delta(L_j, L_{i,t})} \]
Global
(Fully Factored, Low Learnability)

\[P_i = \sum_t \sum_j \frac{V_j}{\delta(L_j, L_{i,t})} \]
Selfish / Individual
(Low Factoredness, \(\infty\) Learnability)

\[D_i = \sum_t \left[\sum_j \frac{V_j}{\min_{i'} \delta(L_j, L_{i',t})} - \sum_j \frac{V_j}{\min_{i' \neq i} \delta(L_j, L_{i',t})} \right] \]
Difference
(High Factoredness, High Learnability)

Episodic Learning

Dynamic Environment
30 Rovers

Dynamic Environment
Scaling
Non-Episodic Learning

Dynamic Environment (30 Agents)

Dynamic Environment (Scaling)

Communication Limitations

Non-Episodic Dynamic Environment 70x75 Unit Env (30 Agents)
Communication Limitations

Non-Episodic Dynamic Environment 70x75 Unit Env (30 Agents)

Beyond Basic Coordination

- Recall key questions:
 - What if you don’t know how to set robot objective functions?
 - How to update them (team formation)?
 - How to modify them to changing objectives (reconfiguration)?
 - What happens when robots can’t compute those objectives?
 - What happens when information is missing?
 - What happens when some robots start to fail?
Approximating Difference Evaluations

• Computing difference evaluations requires:
 - Mathematical form of $G(z)$
 - Global knowledge about the state and actions of all agents

• We typically don’t have access to all this information!

• Assume an agent only knows:
 - Local state
 - Action taken
 - Value, but not functional form, of $G(z)$; team game assumption

Approximating Difference Evaluations

• Idea: each agent maintains a private approximation of $G(z)$
 - Inputs: agent state and action taken
 - Outputs: approximate value of $G(z)$

• At each time step
 - Record local state and action
 - Receive broadcast of $G(z)$ value
 - Use this information to update function approximation

 - Think of this as using a “linear” approximation to a nonlinear function
 - Accuracy depends on “sensitivity to locality” and approximation region
Approximating Difference Evaluations

- The approximation of difference evaluation is then computed:

\[
\tilde{D}_i(z) = G(z) - \tilde{G}(z_{-i})
\]

- Use broadcast for first term
- Use approximation for second term

Approximations in Rover Domain

- Each agent maintains neural network mapping local state and action to \(G(z)\)

\[
\tilde{G}_i(z) \equiv F(s_i, a_i, \bar{w}, f, h)
\]

- \(f(\cdot)\) : Neural network output
- \(s_i\) : state of agent \(i\) (more generally, states known to \(i\))
- \(a_i\) : action of agent \(i\) (more generally, actions known to \(i\))
- \(w\) : vector of weights
- \(f\) : activation functions (more generally, parameters of approximator)
- \(h\) : structure of neural network
Approximations in Rover Domain

• Each agent maintains neural network mapping local state and action to $G(z)$

• At each time step:
 - Record state and action
 - Record broadcast value of $G(z)$
 - Use back-propagation to update neural network for estimate of G

 - Now we have “new” estimate of $G(z)$

 - Use that to approximate $D_i(z)$:
Approximating $D_1(z)$ in Rover Domain

Approximating $D_1(z)$ in Rover Domain
Approximating $D_i(z)$ in Rover Domain

What About Alignment?

- Recall difference evaluations are 100% aligned with system evaluation
 - When we approximate $D_i(z)$, we lose the guarantee of alignment

- What is the relationship between alignment and performance?
 - 10 Agents: 94% Alignment \rightarrow 88% of the performance of $D_i(z)$
 - 100 Agents: 78% Alignment \rightarrow 79% of the performance of $D_i(z)$

- Intuition:
 - Approximation’s alignment and relative performance to $D_i(z)$ are coupled
 - Better alignment leads to better performance

Better approximation man lead to better performance
Key Issues in Multi-Robot Systems

- Communication among robots
- Homogeneity vs. heterogeneity
- Task assignment and specialization
- Computational limitations
- Reliability
- Robustness
- Control architecture
- Localization (with respect to other robots)
- Formation control
- Scalability

Summary

- Loosely coupled systems:
 - Focus on what each robot should do
 - Then let each robot do its thing

- Tightly coupled systems:
 - Focus on what each robot should do
 - Make sure the robots stick to their tasks

- Key: Don’t try to figure out what each robot has to do
 Just put their “incentives” right and let them work
Next Time

- Tensegrity Robots