Announcements:
HW 1 Due on 10/9 noon
(Yes, Friday)

Today

• Syllabus

• About course
 – Expectations
 – Project
 – Topics

• Overlap with other classes:
 – ROB 534: Sequential Decision Making
 – ROB 538: Multiagent Systems
 – CS 533: Intelligent Agents

• Questions ??
Syllabus

- **ME 537**: 4 credits
 - 4 lecture hours
 - 3 lecture hours + lab
 - 3 lecture hours + project

- Class time: M W 10-11:15

- Course website:
 - http://classes.engr.oregonstate.edu/mime/fall2015/rob537/
 - Announcements
 - Homework/Project info

Prerequisites:
- Comfort in programming (C/C++, Java, Python)

Office hours:
- M W 11:30-12:15
- By email appointment

Help sessions:
- Thursdays 2-4 PM (starting 10/8)
- Dearborn 213
- Carrie Rebuhn: rebuhnc@onid.orst.edu
Books

Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Lecture Title</th>
<th>Homework</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9/28</td>
<td>Course Introduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9/30</td>
<td>Neural Network Basics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10/5</td>
<td>Search and Evolutionary Algorithms</td>
<td>HW 1 due at 6pm on 10/9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10/7</td>
<td>Project Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10/12</td>
<td>Neural Networks for Control</td>
<td>HW 2 due at 6pm on 10/23</td>
<td>Background paper due at 6pm on 10/19</td>
</tr>
<tr>
<td>3</td>
<td>10/14</td>
<td></td>
<td>Topic due at 6pm on 10/12</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10/19</td>
<td>Reinforcement Learning</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10/21</td>
<td>MIDTERM EXAM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10/26</td>
<td>Continuous Reinforcement Learning</td>
<td>HW 3 due at 6pm on 11/6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10/28</td>
<td>Project Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11/2</td>
<td>State Estimation and Bayes Filters</td>
<td>HW 4 due at 6pm on 11/20</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>11/4</td>
<td>Project Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11/9</td>
<td>Veteran’s Day: NO CLASS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11/16</td>
<td>Deep Learning</td>
<td>Draft paper due at 6pm 11/16</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>11/18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>11/23</td>
<td>Project Presentations RCG 226</td>
<td>Final paper due at 11:59pm on 12/4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11/30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12/2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Homework

• All homework due at 6pm on Fridays

• Submit by emailing to rebhuhnc@onid.orst.edu
 “safe” format is pdf

• Do not be late!

 Conferences have deadlines. If you miss them, you cannot submit a paper

 Agencies have deadlines. If you miss them, you cannot submit a proposal

Project

• You are writing a technical paper
 – Style files for Latex will be online
 – If not using Latex, format as close to sample file as you can

• Project assignments due at 6pm on announced days
• Final paper due at 11:59 on 12/4

• Project constitutes 40% of grade
 – Background paper (10%)
 – Draft paper (20%)
 – Final paper (50%)
 – Final presentation (20%)
Project

• Topic (1 page)
 – Problem + possible solution + potential impact

• Background paper (3-4 pages)
 – Intro + background + related work + most of the references

• Draft paper (6-8 pages)
 – Background paper + abstract + approach + simulation
 + full references + partial results

• Final paper (8-12 pages)
 – Draft paper + full results + analysis + conclusion/discussion

• Presentation (15 minutes)
 – Conference style presentation

Expectations

• Intense course

• You will need to:
 • Understand key concepts in learning
 • Read recent papers on key topics
 • Code
 • Set up a research problem
 • Solve that problem
 • Write a research paper
 • Give a professional presentation
Why Learning Based Control?

- Traditional control methods:
 - PID controller
 - Optimal/adaptive/stochastic control
 - Appropriate when mathematical system model exists

- Learning-based control
 - “High” level control (autonomous behavior)
 - No mathematical model of system dynamics
 - Too many variables
 - Complex system behavior or system/environment interactions
 - Examples:
 - Autonomous vehicles (rovers / UAVs)
 - Intelligent robotics
 - Interacting intelligent agents

Course Topics: Neural Network

- Classification/ Function Approximation

- Simple input/output mapping
 - Layers
 - Activation Functions
 - Cost functions

- Neural Control
 - What are targets
 - Search weights?
 - Neuro-evolutionary algorithms
Course Topics: Search/Evolutionary Algorithms

- Search/Optimization
 - Objective function
 - Set of variables
 - Find the set of variables that optimizes the objective function

- Basic heuristic search algorithm:
 1. Generate an initial solution (set of variables)
 2. Generate a new solution by modifying the current solution
 3. Evaluate objective function of new solution
 4. Keep new or old solution based on objective function
 5. Go to step 2 and repeat till you reach stopping criteria

Course Topics: Neural Networks for Control

- Neural Control
 - Do we know expected outputs (targets)?
 - How do we training?
 - What is error?
 - Search through weights?
 - Neuro-evolutionary algorithms
Course Topics: Reinforcement Learning

- No model of plant
- State, Action, Reward (S, A, R):
 - $S \times A \rightarrow R$
- Learn from environment
 - Take action, receive reward
- How to assign credit for actions
 - Temporal
 - Structural
- RL for control

Course Topics: Path Planning

- Define start and goal states
- Define possible actions
- Search sequences of actions that connect start states to goal states:
 - Forward chaining
 - Backward chaining
 - Heuristics
- Key issues:
 - Actions deterministic or not?
 - States discrete or continuous?
 - States observable or not?
Course Topics: Rule based Control

- Derive rules to shape behavior:
 - If close to road’s edge, come back to middle.
 - If road is bumpy, slow down

- Extensions:
 - Blur the lines between hard categories
 - “close”, “far”, “hard”, “easy”, “tall”
 - “safe” defines how clear a path is
 - “good” defines how likely a path is reach a goal
 - Similar to probabilistic decision making, but such conceptual functions are NOT probability distributions

Course Topics: State Estimation

- Previous slides consisted of mapping states to actions

- What is current state?

- Do I map current sensor readings to actions?

- Estimate state based on previous state and sensor readings, and use that state to determine actions
Applications

- Autonomous robot operation
- Delivery/routing optimization
- Energy system management
- UAV/AUV control
- (Air) traffic management
- Resource allocation, logistics
- Advanced manufacturing