Problem Definitions

- Do we know what are good robot actions?
 - YES: Supervised learning
 Drive around with the training “on” to generate input/output pairs
 - NO: Unsupervised learning (critic based learning)
 Explore parameters till you find “right behavior”

- Online/Offline?
 - Offline: train/search for a complete solution before implementing
 - Online: take action, evaluate, take next action etc.
Example: Robot Control

- Robots observe environment through some sensors
- Sensors are inputed into a neural network
- Output of neural network determines direction/velocity of rover

Robot Control

Sensor Inputs
Desired Heading

Autonomous Robot

Heading
Robot Control

Sensor Inputs
Desired Heading

→ Neuro Controller

Steering

→ Autonomous Robot

Headings

Neural Network Training Signal

Sensor Inputs
Desired Heading

→ Neuro Controller

Steering

→ Autonomous Robot

Headings
Robot Control: Learn with a Teacher

Robot Control: Learn without a Teacher

Sensor Inputs
Desired Heading

Steering Error

Steering

Autonomous Robot

Heading

Neuro Controller

Robot Performance

Desired Heading
Neural Networks for Nonlinear Control

- Motivation:
 - Control a system with nonlinear dynamics
 - Robot
 - Satellite
 - Air vehicle

- Do we know what the good control strategies are?
 - Yes: “teach” neural network those strategies
 - Drive a car and record good driver actions for each state
 - Fly a helicopter and record good pilot actions for each state
 - No: have a neural network discover those strategies
 - Let car drive around and provide feedback on performance

Neuro-Control with a teacher

1. Initialize a neural network
2. Let neural network pick heading
3. Compute heading error using teacher
4. Use error to update neural network weights
 \(\Delta w = ... \)
5. Go to step 2
Unsupervised Learning

- What if we don’t have a teacher?
- Unsupervised learning: learning without a set of labeled examples
- Each input results in an outcome (measured by a reward)
- Training:

Neuro-Control without a teacher

1. At t=0 initialize N neural networks
2. Pick a network using ϵ-greedy alg ($\epsilon=.1$)
3. Randomly modify network parameters
4. Use network on this agent for T steps
5. Evaluate network performance
6. Re-insert network into pool
7. Remove worst network from pool
8. Go to step 2
Example: Quadrotor Control

• Benefits of quadrotors:
 − Operate in dangerous & challenging environments
 − Overcome resource limitations
 − Maneuverability - over airplanes
 − Mechanical simplicity - over helicopters

• Drawbacks:
 − Highly non-linear dynamics
 − Unintuitive control (difficult for a human)
 − Stability problems – as opposed to airplanes
 − Control problems – as opposed to helicopters

Background – Quadrotor Control
Background — Quadrotor Control
Controller Formulation

- Break problem down into solvable units
 - Top Level: Position controller - for waypoint navigation
 - Middle Level: Attitude controller - for maintaining stability
 - Low level: Pitch/Yaw controller – for specific rotor movement

- All following results from:

Position Controller Formulation

- \(-X_d - X \)
- \(-\dot{X} \)
- \(-Y_d - Y \)
- \(-\dot{Y} \)
- \(-Z_d - Z \)
- \(-\dot{Z} \)

Position Controller

\[\phi_d \]
\[\theta_d \]
\[\dot{Z}_d \]

Position Controller Training

- Fitness based on distance traveled and distance to goal:
 \[F = 10000 - d_g + (100 - d_t)^2 \]

- Stability criteria
 - Erratic motion resulted in a fitness set to 0

- 15000 iterations to train:
 - Select - Mutate - Evaluate
 - Evaluate position controller multiple grid points
 - Run with neuro-controller for 10 seconds
Attitude Controller Formulation

\[\phi_d - \phi \rightarrow \Omega_1 \]
\[\theta_d - \theta \rightarrow \Omega_2 \]
\[\hat{Z}_d - \hat{Z} \rightarrow \Omega_3 \]
\[\psi \rightarrow \Omega_4 \]

Attitude Controller

Attitude Controller Formulation

\[\phi_d - \phi \rightarrow E_\phi \rightarrow \Omega_1 \]
\[\theta_d - \theta \rightarrow E_\theta \rightarrow \Omega_2 \]
\[\hat{Z}_d - \hat{Z} \rightarrow E_v \rightarrow \Omega_3 \]
\[\psi \rightarrow E_\psi \rightarrow \Omega_4 \]

Attitude Controller

Roll

Pitch

Vertical

Yaw
Attitude Controller Formulation

- **Step 1:** Supervised
 - Population of 100 controllers
 - Control quadrotor for 10s
 - Fitness based on matching PID results
 \[F = e^{-\sum |A_{nn} - A_{pid}|} \]
 - Run for 3000 iterations

- **Step 2:** Unsupervised
 - Create new population from best controllers from step 1
 - Add 20% weight mutation
 - Fitness based directly on achieved angle
 - Run for another 1000 iterations
Experiments

1. **Navigation**
 - Set of waypoints given, controller performance measured

2. **Robustness to disturbances**
 - Modeled as a discrete change in the craft's current orientation
 - Sudden at 30° pitch
 - Time to recover, and range of ability to recover compared

3. **Robustness to noise**
 - Random sensor and actuator noise added.
 - Average distance craft traveled around the desired hold point compared

4. **Robustness to design parameters**
 - Craft physical parameters (size, weight, thrust & drag coefficients)
 - Time to perform move compared (mostly binary result).

Navigation Results

[Graphs showing navigation results comparing Neuro Controller and PID Controller]
2. Robustness to Disturbances

3. Robustness to Sensor/Actuator Noise
4. Robustness to Design Parameters

![Graphs showing time to complete vs. % of design mass and thrust coefficient with comparison of Neuro Controller and PID Controller.]

Conclusions — Controller Development/Performance

- Developed a hierarchy of adaptive controllers
 - Divided problem
 - Applied relevant model information

- Produced Quadrotor control that Overcame Disturbances
 - Up to 180° flip

- Handled sensor and actuator Noise
 - 4 times better than PID for sensor noise
 - 8 times better than PID for actuator noise

- Provided insensitivity to Design Parameter
 - Mass & Thrust changes of ±30%
Quadrotor Control: Demo

Quadrotor Recovery: Demo
Learning in the Real World

Human in the Loop: Suggestion Agents