ROB538: Multiagent Systems

Week 2, Lecture 2:

Project Discussion

Announcements:
Paper topics finalized: 10/10
HW 2 due: 10/17

How to do a project in 10 weeks

• Four steps:
 – Project topic finalized (email only) week 3
 – Paper Intro & background week 5
 – Paper draft week 7
 – Final paper week 10

 – Let’s discuss each one
Project Topic

- Email only
- Two paragraphs
 1. High level problem definition
 2. What is the research question?
 What is your approach

Paper: Intro & Background

- Introduction
 - What is the interesting problem: big picture?
 - What is the difficulty?
 - What is the significance of solving this problem
 - What do you intend to do?
 - What is the contribution of this paper?
 - What is coming in the next paragraphs?

- Background
 - Specifics about the problem
 - Key background needed to understand/solve the problem
 - General approaches to the problem
 - Related work addressing these problems

- References
 - Most should be here
Paper: Draft

• Abstract
 – 1 paragraph “ad” for the paper
 – Each section below should have 1-2 sentence summaries

• Introduction

• Background

• Method
 – What is your solution
 – Describe algorithm/theory

• Results
 – Describe set of experiments you will conduct
 – Give preliminary results

• References
 – Full list

Paper: Final Paper

• Abstract
 – 1 paragraph “ad” for the paper
 – Each section below should have 1-2 sentence summaries

• Introduction

• Background

• Method

• Results
 – Describe set of experiments you will conduct
 – Give detailed results
 – Provide Analysis on the results

• Discussion/conclusion
 – Key contributions of paper
 – Key insight
 – Future work

• References
Team Performance

- Rate percentage contribution of each member to final paper
 - Organization
 - Technical Contribution
 - Coding
 - Writing

- All members need to agree to one percentage per team

Domain: Multi-Rover Exploration (Agogino and Tumer, 2008)

- Rovers move around a world, with the goal of sensing POIs
- 2 sensors: one for rovers, one for POIs
- State: \([s, s_1]\)

 \[
 s_{1,q,i} = \sum_{j \in S_1} \frac{V_j}{\delta(L_q, L_i)} \quad s_{2,q,i} = \sum_{i \in S_1} \frac{1}{\delta(L_q, L_i)}
 \]

- \(s_1\) senses POIs, \(s_2\) senses rovers
- \(V_j\) is the value of the \(j\)'th POI
Domain: Multi-Rover Exploration (Agogino and Tumer, 2008)

- Rovers decide how to move
- Actions: $[dx,dy]$
- Team observation reward based on the distance from a POI to the nearest rover
- Performance:
 \[
 G = \sum_j \sum_i \min_j \delta(L_j, L_{i,j})
 \]

Rover Domain Project Extensions

- Consider new states:
 - Rich state (added state elements)
 - Raw image (duplicate paper with deep learning)
 - 360 angle (captured how?)
Rover Domain Project Extensions

• Consider observation limitations:
 – Distance-limited
 – POI only? Rovers observed communication

Rover Domain Project Extensions

• Consider communication limitations:
 – Who are they communicating with?
Rover Domain Project Extensions

• Consider new rewards

Rover Domain Project Extensions

• Consider new system-level objectives:
 – Multiple observations?
 – Time-dependent observations?
Rover Domain Project Extensions

- Consider...