ROB 537: Learning-Based Control

Week 3, Lecture 1
Neural Networks for Control

Announcements:
Paper topics due TODAY
HW 2 Due on 10/16

Reading: Papers on Neurocontrol
Miikkulainen
Shepherd

Problem Definitions

• Do we know what are good robot actions?
 – YES: Supervised learning
 Drive around with the training “on” to generate input/output pairs
 – NO: Unsupervised learning (critic based learning)
 Explore parameters till you find “right behavior”

• Online/Offline ?
 – Offline: train/search for a complete solution before implementing
 – Online: take action, evaluate, take next action etc.
Example: Robot Control

- Robots observe environment through some sensors
- Sensors are inputed into a neural network
- Output of neural network determines direction/velocity of rover

Robot Control

Sensor Inputs
Desired Heading

Autonomous Robot

Heading
Robot Control

Sensor Inputs
Desired Heading

Neuro Controller
Steering
Autonomous Robot
Heading

Neural Network Training Signal
Robot Control: Learn with a Teacher

Sensor Inputs
Desired Heading

Neuro Controller

Steering Error

Autonomous Robot

Heading

Robot Control: Learn without a Teacher

Sensor Inputs
Desired Heading

Neuro Controller

Steering

Robot Performance

Autonomous Robot

Heading
Neural Networks for Nonlinear Control

• Motivation:
 – Control a system with nonlinear dynamics
 • Robot
 • Satellite
 • Air vehicle

• Do we know what the good control strategies are?
 – Yes: “teach” neural network those strategies
 • Drive a car and record good driver actions for each state
 • Fly a helicopter and record good pilot actions for each state
 – No: have a neural network discover those strategies
 • Let car drive around and provide feedback on performance

Neuro-Control with a Teacher

1. Initialize a neural network
2. Let neural network pick heading
3. Compute heading error using teacher
4. Use error to update neural network weights
5. Go to step 2
Unsupervised Learning

- What if we don’t have a teacher?
- Unsupervised learning: learning without a set of labeled examples
- Each input results in an outcome (measured by a reward)
- Training:

?

Neuro-Control without a Teacher

1. At t=0 initialize N neural networks
2. Pick a network using ε-greedy alg (ε=.1)
3. Randomly modify network parameters
4. Use network on this agent for T steps
5. Evaluate network performance
6. Re-insert network into pool
7. Remove worst network from pool
8. Go to step 2
Example: Quadrotor Control

• Benefits of quadrotors:
 – Operate in dangerous & challenging environments
 – Overcome resource limitations
 – Maneuverability - over airplanes
 – Mechanical simplicity - over helicopters

• Drawbacks:
 – Highly non-linear dynamics
 – Unintuitive control (difficult for a human)
 – Stability problems – as opposed to airplanes
 – Control problems – as opposed to helicopters

Background — Quadrotor Control
Controller Formulation

- Break problem down into solvable units
 - Top Level: Position controller - for waypoint navigation
 - Middle Level: Attitude controller - for maintaining stability
 - Low level: Pitch/Yaw controller - for specific rotor movement

All following results from:

Position Controller Formulation

- $X_d - X$
- \dot{X}
- $Y_d - Y$
- \dot{Y}
- $Z_d - Z$
- \dot{Z}

Position Controller

- $F = 10000 \cdot d_g + (100 - d_e)^2$

Position Controller Training

- Fitness based on distance traveled and distance to goal:
- Stability criteria
 - Erratic motion resulted in a fitness set to 0
- 15000 iterations to train:
 - Select · Mutate · Evaluate
 - Evaluate position controller multiple grid points
 - Run with neuro-controller for 10 seconds
Attitude Controller Formulation

\[\phi_d - \phi \rightarrow \Omega_1 \]
\[\theta_d - \theta \rightarrow \Omega_2 \]
\[\dot{Z}_d - \dot{Z} \rightarrow \Omega_3 \]
\[\psi \rightarrow \Omega_4 \]
Attitude Controller Formulation

Attitude Controller - Two Step Training

• Step 1: Supervised
 – Population of 100 controllers
 – Control quadrotor for 10s
 – Fitness based on matching PID results

 \[F = e^{-\sum |A_{nn} - A_{pid}|} \]
 – Run for 3000 iterations

• Step 2: Unsupervised
 – Create new population from best controllers from step 1
 – Add 20% weight mutation
 – Fitness based directly on achieved angle
 – Run for another 1000 iterations
Experiments

1. Navigation
 - Set of waypoints given, controller performance measured

2. Robustness to disturbances
 - Modeled as a discrete change in the craft's current orientation
 - Sudden at 30° pitch
 - Time to recover, and range of ability to recover compared

3. Robustness to noise
 - Random sensor and actuator noise added.
 - Average distance craft traveled around the desired hold point compared

4. Robustness to design parameters
 - Craft physical parameters (size, weight, thrust & drag coefficients)
 - Time to perform move compared (mostly binary result).

1. Navigation Results

![Graphs showing navigation results for different controllers.](image-url)
2. Robustness to Disturbances

![Graph showing recovery time in seconds as a function of pitch disturbance angle.](image)

- Blue line: Neuro Controller
- Red line: PID Controller

3. Robustness to Sensor/Actuator Noise

![Graphs showing average distance vs. noise percentage for sensor and actuator noise.](image)

- Blue line: Neuro Controller
- Red line: PID Controller
4. Robustness to Design Parameters

- Developed a hierarchy of adaptive controllers
 - Divided problem
 - Applied relevant model information
- Produced Quadrotor control that Overcame Disturbances
 - Up to 180° flip
- Handled sensor and actuator Noise
 - 4 times better than PID for sensor noise
 - 8 times better than PID for actuator noise
- Provided insensitivity to Design Parameter
 - Mass & Thrust changes of ±30%

Conclusions — Controller Development/Performance
Learning in Theory

Learning in the Real World
Learning in the Real World

Human in the Loop: Suggestion Agents
Agent-Based Air Traffic Management

- Agents: Control traffic like metering lights
- Two control structures
 - Fully agent controlled Traffic
 - Agents suggest actions to human air traffic controllers
- In both cases, system reward is blend of delay and congestion

Traffic Agents vs. Suggestion Agents

[Graph showing comparison between traffic agents and suggestion agents]
Suggestion Agents

![Graph showing the final maximum system reward achieved with different weights of agents' suggestions.]

Cautionary Tale

- What are your systems learning?