ROB 537: Learning-Based Control

Week 5, Lecture 1
Policy Gradient, Eligibility Traces, Transfer Learning (Matt Taylor)

Announcements:
Project background due Today
HW 3 Due on 10/30
Midterm Exam on 11/6

Reading:
Transfer Learning survey by Taylor & Stone

Policy Gradient

• Gradient Decent

\[MSE(\tilde{\theta}_t) = \sum_{s \in S} p(s) \left(V^\pi(s) - V_t(s) \right)^2 \]

• Basic parameter update (based on uniform \(p(s) \)):

\[\Delta \tilde{\theta}_t = -\frac{1}{2} \alpha \nabla_{\tilde{\theta}_t} \left(V^\pi(s_t) - V_t(s_t) \right)^2 \]

– Update parameters based on the negative of the gradient
Gradient Descent Sarsa

- Gradient descent for state-action values:

\[
\Delta \theta_t = \alpha \left(Q^\pi(s_t, a_t) - Q_t(s_t, a_t) \right) \nabla \theta Q_t(s_t, a_t)
\]

\[
\Delta \theta_t = \alpha \left(r_t + \gamma Q_t(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t) \right) \nabla \theta Q_t(s_t, a_t)
\]

Linear Methods

- Special case of gradient descent methods:
 - \(V_t \) is linear with respect to the parameters \(\theta_t \)
 - There is a vector of features \(\phi \) for each state
 - Function approximation becomes:

\[
V_t(s) = \sum_{i=1}^{n} \theta_t(i) \phi_t(i)
\]
Coarse Coding

- Cover the space with concentric features (for example circles)
- Weights are 0 or 1
- Value is based on coverage

Tile Coding

- Exhaustive partitions (tilings)
- Same number of features as number of tilings
Radial Basis Functions

- Coarse coding generalized to continuous value features
- Each feature can be weighted by a real number (instead of 0 or 1)
Eligibility Traces

• Eligibility Traces are the basic mechanism of assigning credit in Reinforcement Learning
 – In TD(λ), λ refers to an eligibility trace

• Basic Idea:
 – Determine how many rewards will be used in evaluating a value function
 – Determine which states are eligible for an update
 – Connect TD learning and Monte Carlo Learning

Eligibility Traces

• Forward view:
 – Theoretical
 – Connect TD learning and Monte Carlo learning
 ▪ In TD learning only previous state is eligible
 ▪ In Monte Carlo, all visited states are eligible
 – Intuition: How far ahead do you need to look to figure out value of a state

• Backward view:
 – Mechanistic
 – Temporary record of events
 ▪ Visiting states, taking actions, Receiving Rewards
 – Intuition: How many state value pairs do I need to store to figure out value of a state
Forward View

- Recall Monte Carlo methods for a T step episode:
 \[R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots + \gamma^{T-t-1} r_T \]
 - The update is based on all the returns

- In TD backup:
 \[R_t^{(1)} = r_{t+1} + \gamma V_t(s_{t+1}) \]
 - The update is based on 1-step backup

Why restrict ourselves to these two extremes?

Forward View: n-step TD

- Why not look at 2-step backup:
 \[R_t^{(2)} = r_{t+1} + \gamma r_{t+2} + \gamma^2 V_t(s_{t+2}) \]

- How about n-step backup?
 \[R_t^{(n)} = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \cdots + \gamma^{n-1} r_{t+n} + \gamma^n V_t(s_{t+n}) \]

- Called “corrected n-step truncated return” or n-step return
Forward View

- Causal, incremental view
- Implementable
- Introduce a new memory variable: eligibility trace $e_t(s)$
 - On each step eligibility trace for each state decays by $\gamma \lambda$
 - Eligibility trace of one state increased by 1

\[
e_t(s) = \begin{cases}
\gamma \lambda e_{t-1}(s) & \text{if } s \neq s_t \\
\gamma \lambda e_{t-1}(s) + 1 & \text{if } s = s_t
\end{cases}
\]

(Sutton & Barto)

Backward View

- Causal, incremental view
- Implementable
- Introduce a new memory variable: eligibility trace $e_t(s)$
 - On each step eligibility trace for each state decays by $\gamma \lambda$
 - Eligibility trace of one state increased by 1

\[
e_t(s) = \begin{cases}
\gamma \lambda e_{t-1}(s) & \text{if } s \neq s_t \\
\gamma \lambda e_{t-1}(s) + 1 & \text{if } s = s_t
\end{cases}
\]

- λ is trace decay parameter
- γ is the discount rate used previously
Intuition

- At any time eligibility traces keep track of which states have been recently visited
 - Recently is quantified by $\gamma \lambda$
- The traces capture how “eligible” a state is for an update
- Recall basic reinforcement learning:

\[
\text{NewEstimate} \leftarrow \text{OldEstimate} + \text{Stepsize} \times (\text{Target} – \text{OldEstimate})
\]

Now, update all values based on eligibility trace

Implementation

- For TD, the error was:

\[
\delta_t = r(s_t) + \gamma V(s_{t+1}) - V(s_t)
\]

- Then update becomes:

\[
V_{t+1}(s) = V_t(s) + \alpha \delta_t e(s_t) \quad \text{for all } s \in S
\]
Special Cases

- Let’s explore two special cases based on this update rule

\[V_{t+1}(s) = V_t(s) + \alpha \delta_t e(s_t) \quad \text{for all } s \in S \]

- For \(\lambda = 0 \):
 - All traces are 0 at \(t \) except state visited at \(t: s_t \)
 - Reduces to TD update rule

- For \(\lambda = 1 \):
 - All states receive credit decaying by \(\gamma \)
 - This is the Monte Carlo updates
 - If \(\gamma = 1 \) as well, there is no decay in time and we have undiscounted Monte Carlo updates

Forward and Backward Views

- Forward view
Forward and Backward Views

- Forward view

- Backward view

(Sutton & Barto)

Sarsa (\(\lambda\))

- Recall Sarsa learning:

\[
Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r(s_t, a_t) + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))
\]

- Now, we have:

\[
Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \delta_t e(s_t, a_t) \quad \text{for all } s, a
\]

Increase eligibility if \(s, a\) picked
Decay eligibility otherwise
Sarsa (λ)

- Recall Sarsa learning:

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha (r(s_t, a_t) + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)) \]

- Now, we have:

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \delta_t e(s_t, a_t) \quad \text{for all } s, a \]

- where:

\[\delta_t = r(s_t, a_t) + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \]

\[e_t(s,a) = \begin{cases}
\gamma \lambda e_{t-1}(s,a)+1 & \text{if } s = s_t \text{ and } a = a_t \\
\gamma \lambda e_{t-1}(s,a) & \text{otherwise}
\end{cases} \quad \text{for all } s, a \]

Example: Sarsa (λ)

- Recall Sarsa updates: only last state receives update. All other state action pairs will update when visited/taken next

Path taken

Action values increased by one-step Sarsa

Action values increased by Sarsa(λ) with \(\lambda = 0.9 \)
Recall Q-learning

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r(s_t, a_t) + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right) \]

Now, we have:

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \delta_t e(s_t, a_t) \quad \text{for all } s, a \]

where

\[\delta_t = r(s_t, a_t) + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \]

\[e_t(s,a) = I_{ss} \cdot I_{aa} \begin{cases} \gamma \lambda e_{t-1}(s,a) + 1 & \text{if } Q_{t-1}(s, a) = \max_a Q_{t-1}(s, a) \\ 0 & \text{otherwise} \end{cases} \]

Q(\lambda)

• Q-learning with eligibility traces:

 – Like in Sarsa learning, except eligibility trace set to zero after an exploratory move (not greedy)

 – Intuition: two step process
 – Step 1:
 ▪ Either each state-action pair decayed by \(\lambda \)
 ▪ Or all set to 0 after an exploratory step
 – Step 2:
 ▪ Trace for current state action pair incremented by 1

 (this is Watkins’ Q(\lambda); There are other versions as well.)
Back to Gradient Descent Sarsa

• Gradient descent for state-action values:

\[
\Delta \theta_t = \alpha \left(Q^\pi(s_t, a_t) - Q_t(s_t, a_t) \right) \nabla_\theta Q_t(s_t, a_t)
\]

\[
\Delta \tilde{\theta}_t = \alpha \left(r_{t+1} + \gamma Q_t(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t) \right) \nabla_\theta Q_t(s_t, a_t)
\]

• Gradient descent Sarsa:

 – 1-step backup
 – Extend to eligibility traces

Gradient Descent Sarsa(λ)

• Gradient descent Sarsa(λ):

\[
\Delta \tilde{\theta}_t = \alpha \delta_t \bar{e}_t
\]

– where

\[
\delta_t = r_{t+1} + \gamma Q_t(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t)
\]

\[
\bar{e}_t = \gamma \lambda \bar{e}_{t-1} + \nabla_\theta Q_t(s_t, a_t)
\]
Transfer Learning

So far, we learned all policies from scratch
 – Can be unnecessarily slow

• Humans can use past information
 – Soccer with different numbers of players

• How do we leverage learned knowledge in novel tasks
 – Bias learning: speedup method
Transfer Learning

Matthew E. Taylor and Peter Stone.

(Slides courtesy of Matt Taylor)

Primary Questions

- Is it possible to transfer learned knowledge?
- Is it possible to transfer *without* providing a task mapping?
- Focus on reinforcement learning tasks
 - Plenty of work in supervised settings
\[Q_s \text{ not defined on } S_T \text{ and } A_T \]
\[\rho(Q_s(S, A)) = Q_T(S_T, A_T) \]

Action-Value function transferred

\[\rho \text{ is task-dependant: relies on inter-task mappings} \]
Inter Task Mappings

• \(\chi_x: S_{\text{target}} \rightarrow S_{\text{source}} \)
 – Given state variable in target task (some \(x \) from \(s=x_1, x_2, \ldots, x_n \))
 – Return corresponding state variable in source task

• \(\chi_A: a_{\text{target}} \rightarrow a_{\text{source}} \)
 – Given action in target task
 – Return corresponding action in source task

• Intuitive mappings exist in some domains (Oracle)
• Used to construct transfer function

Q Value reuse

\[
Q(s, a) = Q_{\text{source}}(\chi_x(s), \chi_A(a)) + Q_{\text{target}}(s, a)
\]

• Can be considered a type of reward shaping
• Directly use Q values from source task to bias learner in target task
• Not function-approximator specific
• No initialization step needed between learning the two tasks
• Drawbacks: an increased lookup time and larger memory requirements
Keepaway [Stone, Sutton, and Kuhlmann 2005]

Goal: Maintain possession of ball
3 vs. 2:
5 agents
3 (stochastic) actions
13 (noisy & continuous) state variables

4 vs. 3:
7 agents
4 actions
19 state variables

Keeper with ball may hold ball or pass to either teammate
Both takers move towards player with ball

Transfer Learning in Keepaway

• 3 vs. 2 Keepaway

• Or 4 vs. 3 ...
• Can learning transfer from 3 vs. 2 to 4 vs. 3?
Learning Keepaway

- **Sarsa update**
 - RBF and neural network approximation successful

- **$Q^\pi(s,a)$**: Predicted number of steps episode will last
 - Reward = +1 for every timestep

ρ’s Effect on function approximator

- For each weight in 4 vs. 3 function approximator:
 - Use inter-task mapping to find corresponding 3 vs. 2 weight
Keepaway Hand-coded x_A

Actions in 4 vs. 3 have "similar" actions in 3 vs. 2

- $\text{Hold}_{4v3} \rightarrow \text{Hold}_{3v2}$
- $\text{Pass1}_{4v3} \rightarrow \text{Pass1}_{3v2}$
- $\text{Pass2}_{4v3} \rightarrow \text{Pass2}_{3v2}$
- $\text{Pass3}_{4v3} \rightarrow \text{Pass3}_{3v2}$
Example Transfer Domains

- Series of mazes with different goals [Fernandez and Veloso, 2006]

Example Transfer Domains

- Series of mazes with different goals [Fernandez and Veloso, 2006]
- Mazes with different structures [Konidaris and Barto, 2007]
Example Transfer Domains

- Series of mazes with different goals [Fernandez and Veloso, 2006]
- Mazes with different structures [Konidaris and Barto, 2007]
- Keepaway with different numbers of players [Taylor and Stone, 2005]

Example Transfer Domains

- Series of mazes with different goals [Fernandez and Veloso, 2006]
- Mazes with different structures [Konidaris and Barto, 2007]
- Keepaway with different numbers of players [Taylor and Stone, 2005]
- Keepaway to Breakaway [Torrey et al, 2005]
Transfer Learning

• So far, we talked about transfer learning in a specific domain
 – Task: MDP
 – Domain: Setting for semantically similar task

• What about Cross-Domain Transfer?
 – Source task could be much simpler
 – Source and Target can be less similar

• What about transferring policies (or just rules) ?

Rule Transfer Overview

1. Learn a policy ($\pi : S \rightarrow A$) in the source task
 – TD, Policy Search, Model-Based, etc.
2. Learn a decision list, D_{source}, summarizing π
3. Translate ($D_{source} \rightarrow D_{target}$) (applies to target task)
 – State variables and actions can differ in two tasks
4. Use D_{target} to learn a policy in target task

Allows for different learning methods and function approximators in source and target tasks
Rule Transfer Details

- For example, use Sarsa
 - $Q: S \times A \rightarrow \text{Return}$
- Other learning methods possible

Source Task

Rule Transfer Details

- Use learned policy to record S, A pairs
- Extract a rules list (for example: use JRip (RIPPER in Weka))

<table>
<thead>
<tr>
<th>Environment</th>
<th>Agent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action</td>
<td>State</td>
</tr>
<tr>
<td>Reward</td>
<td></td>
</tr>
</tbody>
</table>

- IF $s_1 < 4$ and $s_2 > 5 \rightarrow a_1$
- ELSEIF $s_1 < 3 \rightarrow a_2$
- ELSEIF $s_3 > 7 \rightarrow a_1$
- ...
Rule Transfer Details

Learn π → Learn D_{source} → Translate $(D_{source}) \rightarrow D_{target}$ → Use D_{target}

- Inter-task Mappings
 - χ_x: $s_{target} \rightarrow s_{source}$
 - Given state variable in target task (some x from $s = x_1, x_2, ..., x_n$)
 - Return corresponding state variable in source task
 - χ_A: $a_{target} \rightarrow a_{source}$
 - Similar, but for actions

Rule Transfer Details

Learn π → Learn D_{source} → Translate $(D_{source}) \rightarrow D_{target}$ → Use D_{target}

χ_x: $s_{target} \rightarrow s_{source}$

χ_A: $a_{target} \rightarrow a_{source}$

Source	Target
s | s'
a | a'

rule | rule'

X_A

Stay
Run$_{near}$
Run$_{far}$

IF dist(Player, Opponent) > 4 → Stay

X_x

dist(Player, Opponent)	dist(K_1, T_1)

IF dist(K_2, T_2) > 4 → Hold Ball
Rule Transfer Details

- Many possible ways to use D_{target}
 - Value Bonus (shaping)
 - Extra Action (initially force agent to select)
 - Extra Variable (initially force agent to select)
- Assuming TD learner in target task
 - Should generalize to other learning methods

Evaluate agent’s 3 actions in state $s = s_1, s_2$

<table>
<thead>
<tr>
<th>Action</th>
<th>$Q(s_1, s_2, a_1)$</th>
<th>$Q(s_1, s_2, a_2)$</th>
<th>$Q(s_1, s_2, a_3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

$Q(s_1, s_2, a_4) = 7$ (take action a_4)

Problem Statement

- Meta-planning problem for agent learning
 - Learn from scratch?
 - Or learn through a series of similar tasks?
 - Start with similar, simple task and move closer to target task