3. **Divisibility**

x_j can take noninteger values

4. **Deterministic**

c_j, a_ij, and b_j are all known deterministic values

Inequalities and equations

\[\sum_{j=1}^{m} a_{ij} x_j \leq b_i ; \quad i = 1, 2, \ldots, m \]

The above \(\leq \) constraint can be converted into an equality constraint by introducing a slack variable \(x_{n+i} \).

\[\Rightarrow \sum_{j=1}^{m} a_{ij} x_j + x_{n+i} = b_i \]

\[\sum_{j=1}^{m} a_{ij} x_j \geq b_i ; \quad i = 1, 2, \ldots, m \]

The above constraint can be converted into an equality constraint by introducing a surplus variable \(x_{n+i} \Rightarrow (\text{sometimes denoted by } S_i) \).

\[\Rightarrow \sum_{j=1}^{m} a_{ij} x_j - x_{n+i} = b_i \]
\[\sum_{j=1}^{n} a_{ij} x_j = b_i \]

This is not typically done, but has applications in canonical forms and duality theory.

Nonnegativity restrictions

The simplex method assumes that the variables introduced in the formulae are all nonnegative.

Q? (i) What if \(x_j \) is *unrestricted* in sign

\[
\Rightarrow x_j = x'_j - x''_j
\]

where \(x'_j \geq 0 \)

\[+ x''_j \geq 0 \]

(ii) \(x_j \geq b_j \) \(\Rightarrow \) lower bound.

\[\Rightarrow \text{use } x'_j = x_j - b_j \]

\[+ x'_j \geq 0 \]
(iii) \(x_j \leq y_j \), where \(y_j \leq 0 \)

\[\Rightarrow x_j' = y_j - x_j \]

\[+ x_j' \geq 0 \]

Relationship between min and max problems

Max \(Z = \sum_{j=1}^{n} c_j x_j \)

is equivalent to (or \(\equiv \))

Min \(-Z = \sum_{j=1}^{n} -c_j x_j \)

A max(min) problem can be converted into a min(max) problem simply by multiplying the obj func by -1. The optimal obj func value for the original problem is \((-1)\) times the optimal obj func value for the converted problem.

Max \(\sum_{j=1}^{n} c_j x_j = -\text{Min} \sum_{j=1}^{n} -c_j x_j \)

Max \(Z = 10x_1 \)

\[x_1 \leq 5 \]

\[x_1 \geq 0 \]

\(Z^* = 50 \)

\(-x_1^* = 5 \)

Min \(-Z = -10x_1 \)

\[x_1 \leq 5 \]

\[x_1 \geq 0 \]

Min \(R = 10x_1 \)

\[x_1 \leq 5 \]

\[x_1 \geq 0 \]

\(R^* = -50 \)

\(-x_1^* = 5 \)

\(\Rightarrow Z^* = -R^* \)
Standard and canonical forms

A LP problem in standard form consists of constraints that are all equalities and variables that are nonnegative. The simplex method can be applied to a LP problem only after it is converted to a std. form.

Canonical form — minimization
- Constraints are all \geq, and variables are nonnegative

Canonical form — maximization
- Constraints all \leq, and variables are nonnegative

Canonical forms are useful in establishing duality relationships.
1. Min \(Z = x_1 - 2x_2 - 3x_3 \)

 St.:
 \[
 \begin{align*}
 x_1 + 2x_2 + x_3 & \leq 14 \\
 x_1 + 2x_2 + 4x_3 & \geq 12 \\
 x_1 - x_2 - x_3 &= 2 \\
 x_1, x_2 & \text{ unrestricted} \\
 x_3 & \leq -3
 \end{align*}
 \]

2. \(x_1 = x_1' - x_1'' \)
 \(x_2 = x_2' - x_2'' \)
 \(x_3' = -3 - x_3 \Rightarrow x_3 = -3 - x_3' \)

 Min \(Z = x_1' - x_1'' - 2x_2' + 2x_2'' + 3x_3' + 9 \)

 St.:
 \[
 \begin{align*}
 x_1' - x_1'' + 2x_2' - 2x_2'' - x_3' & \leq 17 \\
 x_1' - x_1'' + 2x_2' - 2x_2'' - 4x_3' & \geq 24 \\
 x_1' - x_1'' - x_2' + x_2'' - x_3' &= 5 \quad \text{slack} \\
 x_1' - x_1'' + 2x_2' - 2x_2'' - x_3' + x_4' &= 17 \quad \text{surplus} \\
 x_1' - x_1'' + 2x_2' - 2x_2'' - 4x_3' - x_5' &= 24
 \end{align*}
 \]

 \(x_i \geq 0 \quad i = 1, 2, 3 \)
 \(x_i'' \geq 0 \quad j = 1, 2 \)
 \(x_4', x_5' \geq 0 \)
(b) \[\text{Min } Z = -x_1' - x_1'' - 2x_2' + 2x_2'' + 3x_3' \]

\[-x_1' + x_1'' - 2x_2' + 2x_2'' + 8x_3' \geq -17 \]

\[x_1' - x_1'' + 2x_2' - 2x_2'' - 4x_3' \geq 24 \]

\[x_1' - x_1'' - x_2'' + x_2'' - x_3' \geq 5 \]

\[-x_1' + x_1'' + x_2'' - x_2'' + x_3' \geq -5 \]

\[x_2' \geq 0 \quad i = 1,2,3 \]

\[x_3' \geq 0 \quad j = 1,2 \]

(c) \[\text{Min } Z = \text{Max } (-2) \]

\[R = \text{Max } -x_1 + 2x_2 + 3x_3 \]

\[= \text{Max } -x_1' + x_1'' + 2x_2' - 2x_2'' - 3x_3' \]

\[\text{st:} \]

1. The same constraints as in the original problem.
2. The “\(\text{Max} \)" as in (b) for standard form.
3. The “\(\text{Min} \)" as in (b) for canonical form.
Max \(Z = x_1 - x_2 \)

s.t.:

1. \(-x_1 + 2x_2 \leq 0\)
2. \(-3x_1 + x_2 \geq -3\)
3. \(x_1, x_2 \geq 0\)

The gradient or the partial derivative vector of the linear function

\[f_1(x_1, x_2) = -x_1 + 2x_2 \]

\[\frac{\partial f_1}{\partial x_1} (x_1, x_2) = -1 \]

\[\frac{\partial f_1}{\partial x_2} (x_1, x_2) = 2 \]

\[\Rightarrow \text{gradient} = \begin{bmatrix} -1 \\ 2 \end{bmatrix} \]

\[\Rightarrow -x_1 + 2x_2 \text{ increases steeply in the direction} \]

\[\begin{bmatrix} -1 \\ 2 \end{bmatrix} \] and decreases steeply in the direction

\[\begin{bmatrix} 1 \\ -2 \end{bmatrix}. \]
\[f_2(x_1, x_2) = -3x_1 + x_2 \]

The gradient for the linear function
\[f_2(x_1, x_2) = -3x_1 + x_2 \] is:

\[
\begin{bmatrix}
-3 \\
1
\end{bmatrix}
\]