Cognition
The AORTA (Stage) Model of Human Performance

- **Attend**
 - attend to selected stimuli
 - attend to one task
 - attend to several tasks

- **Observe**
 - see/read
 - hear
 - feel (palpate)
 - detect
 - discriminate
 - recognize
 - perceive

- **Remember**
 - memorize
 - recall (long-/short-term)
 - remember to do
 - maintain mental model

- **Think**
 - calculate
 - decide
 - solve
 - develop alternatives
 - choose alternative
 - select response

- **Act**
 - reach
 - grasp
 - move/manipulate
 - speak
 - walk/run
 - respond

Environment

Stimuli

Responses
IDEF0 Version of the Stage Model
Attend (Attention)

Attend
- attend to selected stimuli
- attend to one task
- attend to several tasks

Observe

Remember

Think

Act

Environment

stimuli

responses
Attention

- Types of attention (flashlight metaphor)
 - Selective (aim point)
 - Focused (narrow beam)
 - Divided (wide beam)
- Factors influencing selective attention (SEEV theory/model)
 - Salience
 - Effort
 - Expectancy (where info is)
 - Perceived Value
- Attention in
 - perception: stimuli, information channels vs
 - multitasking: tasks
Some Common Human Attentional Fallibilities

- **Attend**
 - Limited attentional resources
 - Attraction to salient but irrelevant cues
 - Inability to focus attention: distraction
 - Inability to divide attention: tunneling

- **Observe**

- **Remember**

- **Think**

- **Act**

Environment

- Fallibility: “ability” to fail, tendency to fail → poor performance (delay, error)
Some Attentional Fallibilities and Countermeasures

● Common Fallibilities
 - limited attentional resources
 - attraction to salient but irrelevant cues
 - inability to focus attention: distraction
 - inability to divide attention: tunneling (often stress-induced)

● Countermeasures
 - Avoid concurrent tasks (multitasking).
 - Limit distractions and interruptions*.
 - Control extraneous environmental stimuli.
 - Match stimulus salience to related task importance/urgency.
 - Reduce stressors (time, environmental, job-related) -- but not all!
 - Provide placeholder cues for complex procedures.
 - Identify critical periods of performance and prohibit distractions.
 - Train operators to be aware of these fallibilities.
Some Attentional Fallibilities and Countermeasures

• Common Fallibilities
 - limited attentional resources
 - attraction to salient but irrelevant cues
 - inability to focus attention: distraction
 - inability to divide attention: tunneling (often stress-induced)

• Countermeasures
 - Avoid concurrent tasks (multitasking).
 - Limit distractions and interruptions*.
 - Control extraneous environmental stimuli.
 - Match stimulus salience to related task importance/urgency.
 - Reduce stressors (time, environmental, job-related) -- but not all!
 - Provide placeholder cues for complex procedures.
 - Identify critical periods of performance and prohibit distractions.
 - Train operators to be aware of these fallibilities.
Observe
(Sensing + Perception)

- **Observe**: see/read, hear, feel (palpate), detect, discriminate, recognize, perceive
- **Attend**: Environment
- **Remember**: stimuli
- **Think**: responses
- **Act**: Environment

Diagram showing the process of sensory input and response.
Sensing and Perception

- Sensing (cf. Vision, Hearing and Other Senses)
 - Bottom-up processing

- Perception
 - Perceptual Process
 - Analysis
 - Unitization: recognition of patterns
 - Top-down processing: driven by expectations
 - HF Guidelines for Perception
 - Maximize bottom-up processing
 - Maximize automaticity & unitization
 - automaticity: familiar patterns
 - unitization: perception of commonly occurring combinations of features
 - Maximize top-down processing
 - Discriminable features, small vocabulary, context, redundancy, no illusions/confusions
 - Perception tends to be automatic (except when bottom-up processing is poor)
Some Common Human Sensing and Perceptual Fallibilities

- **Attend**
- **Observe**
 - detection thresholds
 - limited visual field
 - sensory impairments
 - auditory masking
 - discrimination thresholds
 - vigilance loss
- **Think**
- **Act**

Environment

- **Stimuli**
- **Responses**
Some Sensory and Perceptual Fallibilities and Countermeasures

• Common Fallibilities
 - detection thresholds
 - limited visual field
 - sensory impairments
 - auditory masking
 - discrimination thresholds
 - vigilance loss

• Countermeasures
 - Provide adequate level and quality of illumination.
 - Provide adequate contrast between stimulus and background.
 - Consider visual impairments (esp. presbyopia).
 - Reduce vibration.
 - Design sounds to be in sensitive frequency range (1,000 – 4,000 Hz).
 - Avoid masking by ambient noise and other sounds.
 - continued ...
Some Sensory and Perceptual Fallibilities and Countermeasures (2)

• Common Fallibilities
 - detection thresholds
 - limited visual field
 - sensory impairments
 - auditory masking
 - discrimination thresholds
 - vigilance loss

• Countermeasures
 - Design displays well*.
 • Make displays legible (element size, color, discriminability, ...) or audible.
 • Facilitate redundancy gain.
 • Use discriminable elements.
 • Satisfy principle of pictorial realism.
 • Satisfy principle of the moving part.
 • Minimize information access cost.
 • Provide proximity compatibility.
 • Replace memory with visual information.
 - continued ...
Some Sensory and Perceptual Fallibilities and Countermeasures (2)

• Common Fallibilities
 - detection thresholds
 - limited visual field
 - sensory impairments
 - auditory masking
 - discrimination thresholds
 - vigilance loss

• Countermeasures
 - Design displays well*.
 • Make displays legible (element size, color, discriminability, ...) or audible.
 • Facilitate redundancy gain.
 • Use discriminable elements.
 • Satisfy principle of pictorial realism.
 • Satisfy principle of the moving part.
 • Minimize information access cost.
 • Provide proximity compatibility.
 • Replace memory with visual information.
 - continued ...
Some Sensory and Perceptual Fallibilities and Countermeasures (3)

• **Common Fallibilities**
 - detection thresholds
 - limited visual field
 - sensory impairments
 - auditory masking
 - discrimination thresholds
 - vigilance loss

• **Countermeasures**
 - Design auditory alarms* to be:
 • above background sound,
 • not masked by ambient noise,
 • below danger level,
 • not overly startling (longer rise time),
 • should not interfere with other signals,
 • Informative.
 - continued ...
Some Sensory and Perceptual Fallibilities and Countermeasures (3)

• Common Fallibilities
 - detection thresholds
 - limited visual field
 - sensory impairments
 - auditory masking
 - discrimination thresholds
 - vigilance loss

• Countermeasures
 - Design auditory alarms* to be:
 • above background sound,
 • not masked by ambient noise,
 • below danger level,
 • not overly startling (longer rise time),
 • should not interfere with other signals,
 • Informative.
 - continued ...
Some Sensory and Perceptual Fallibilities and Countermeasures (4)

• Common Fallibilities
 - detection thresholds
 - limited visual field
 - sensory impairments
 - auditory masking
 - discrimination thresholds
 - vigilance loss

• Countermeasures
 - Design text well (typography)*.
 - Use sans-serif font (as opposed to serif font, like this).
 - Use mixed (upper/lower) case.
 - Use adequate font size (> 10 pt).
 - Provide spacing between lines ≥ 25 - 33% overall font size.
 - Use appropriate line length (single-column ~ 4 in, double-column ~ 3 in).
 - Avoid long passages in *italics*.
 - Use *font face* to *emphasize*, *distinguish*, but don't use *too many*.
 - Use dark characters over a light background.
 - Use color coding (highlighting) to emphasize (but not black over dark red, dark green, or dark blue)
Some Sensory and Perceptual Fallibilities and Countermeasures (4)

• Common Fallibilities
 - detection thresholds
 - limited visual field
 - sensory impairments
 - auditory masking
 - discrimination thresholds
 - vigilance loss

• Countermeasures
 - Design text well (typography)*.
 - Use sans-serif font (as opposed to serif font, like this).
 - Use mixed (upper/lower) case.
 - Use adequate font size (> 10 pt).
 - Provide spacing between lines ≥ 25 - 33% overall font size.
 - Use appropriate line length (single-column ~ 4 in, double-column ~ 3 in).
 - Avoid long passages in italics.
 - Use font face to emphasize, distinguish, but don't use too many.
 - Use dark characters over a light background.
 - Use color coding (highlighting) to emphasize (but not black over dark red, dark green, or dark blue)
Remember
(Working Memory + Long Term Memory)

- Attend
- Observe
- Remember
- Think
- Act

Environment

stimuli

Remember:
- memorize
- recall (long-/short-term)
- remember to do
- maintain mental model

responses
Working Memory

• WM Components
 - Central executive: attentional control & coordination
 - Visio-spatial sketchpad
 - Phonological loop

• WM Limits
 - 7 ± 2 chunks
 - < 20 sec (7 sec ½-life for 3 chunks, 70 sec for 1 chunk)
 - Maintenance rehearsal
 - Confusability, similarity reduce performance
Long Term Memory

- Types of LTM
 - Semantic memory
 - Declarative knowledge (facts)
 - Procedural knowledge (procedures)
 - Event memory (episodic memory)

- Basic Mechanisms
 - Features of knowledge in LTM
 - Strength = f(frequency, recency)
 - Associations (links)
 - WM vs LTM
 - WM as area of activation
 - Role of WM in learning, forming associations
 - Forgetting
 - Low strength
 - weak/few associations
 - Interfering associations
Long Term Memory (continued)

- **LTM Organization**
 - Associative/semantic network (e.g., Forward Observer's knowledge about targeting devices – see next)
 - Schemas: prototypical memory structures
 - Scripts: “typical” activity/event sequences (e.g., restaurant script)
 - Mental model: mental “simulation”
 - Cognitive maps (spatial information, e.g., my “map” of Albany)
- **Episodic memory for events** (see p. 139 ff)
- **Prospective memory**: remembering what to do
- **Situation Awareness**
 - Level I: awareness of objects in environment
 - Level II: comprehension, understanding
 - Level III: prediction of future situation
 - Measurement (e.g., SAGAT = SA Global Assessment Technique)
LTM As Associative Network:
Part of a Forward Observer's knowledge of targeting devices
Some Common Human Memory Fallibilities

- limited working memory capacity (7 ± 2 “chunks”)
- limited working memory duration (< 20 sec)
- inefficient chunking
- verbal/spatial dominance
- weak long-term memory associations
- limited prospective memory

Environment

stimuli

Attend

Observe

Remember

Think

Act

responses
Some Memory Fallibilities and Countermeasures

• Common Fallibilities
 - limited working memory capacity (7 + 2 “chunks”)
 - limited working memory duration (< 20 sec)
 - inefficient chunking
 - verbal/spatial dominance
 - weak long-term memory associations
 - limited prospective memory

• Countermeasures (Working Memory)
 - Minimize working memory load.
 - Provide placeholders for sequential tasks.
 - Provide other mnemonics*.
 - Exploit chunking.
 - 3-4 characters/chunk (e.g., 1-541-737-2357)
 - Meaningful sequences (e.g., SFO)
 - Letters > digits
 - Digits separate from letters (PQG 929 vs P9Q2G9)
 - Minimize confusability (e.g., 7-2357 [Funk] vs 7-5237 [Helvie])
Some Memory Fallibilities and Countermeasures

● Common Fallibilities
 - limited working memory capacity (7 + 2 “chunks”)
 - limited working memory duration (< 20 sec)
 - inefficient chunking
 - verbal/spatial dominance
 - weak long-term memory associations
 - limited prospective memory

● Countermeasures (Working Memory)
 - Minimize working memory load.
 - Provide placeholders for sequential tasks.
 - Provide other mnemonics*.
 - Exploit chunking.
 - 3-4 characters/chunk (e.g., 1-541-737-2357)
 - Meaningful sequences (e.g., SFO)
 - Letters > digits
 - Digits separate from letters (PQG 929 vs P9Q2G9)
 - Minimize confusability (e.g., 7-2357 [Funk] vs 7-5237 [Helvie])
Some Memory Fallibilities and Countermeasures (2)

• Common Fallibilities
 - limited working memory capacity (7 + 2 “chunks”)
 - limited working memory duration (< 20 sec)
 - inefficient chunking
 - verbal/spatial dominance
 - weak long-term memory associations
 - limited prospective memory

• Countermeasures (Long Term Memory)
 - Encourage regular use (↑ frequency, ↑ recency)
 - Encourage active verbalization or active reproduction (repeat, take notes, etc.)
 - Standardize
 - Use memory aids (e.g., GUMPS*)
 - Design information to be remembered:
 • Meaningful
 • Distinctive
 • Well organized
 • “Guessable”
 • Little technical jargon
Some Memory Fallibilities and Countermeasures (2)

• Common Fallibilities
 - limited working memory capacity (7 + 2 “chunks”)
 - limited working memory duration (< 20 sec)
 - inefficient chunking
 - verbal/spatial dominance
 - weak long-term memory associations
 - limited prospective memory

• Countermeasures (Long Term Memory)
 - Encourage regular use (↑ frequency, ↑ recency)
 - Encourage active verbalization or active reproduction (repeat, take notes, etc.)
 - Standardize
 - Use memory aids (e.g., GUMPS*)
 - Design information to be remembered:
 • Meaningful
 • Distinctive
 • Well organized
 • “Guessable”
 • Little technical jargon

Gas
Undercarriage
Mixture
Prop(s)
Systems

Also
Undercarriage
Speed
Trim
Airbrakes (glider)
Look
Landing

Photo by P Miller <pmliller@nkn.net>, downloaded 15 Oct 2010 from http://www.tomzap.com/plane.html.
Think
(Decision Making, Problem Solving, Trouble-shooting, ...)

Attend

Observe

Remember

Think
- calculate
- decide
- solve
- develop alternatives
- choose alternative
- select response

Act

Environment

stimuli

responses
Decision Making, Problem Solving, Troubleshooting, etc.

- Decision Making
 - Formulate decision problem
 - Generate alternatives
 - Eliminate alternatives
 - Evaluate alternatives
 - Choose final alternative

- Problem solving: initial state \rightarrow goal state

- Troubleshooting: diagnosis

- Planning and scheduling
 - Command state, predicted state
 - Mental simulation (mental model)
 - Plan continuation error
Some Common Human Decision Making,..., Fallibilities

Attend

Observe

Remember

Think

Act

Environment

- anchoring, confirmation bias
- recency bias
- tendency to treat all sources as equally reliable bias against absence of cues
- asymmetric valuation (gain/loss)
- overconfidence
- erroneous mental model

stimuli

responses
Act (Response)

Attend

Observe

Remember

Think

Act

reach
grasp
move/manipulate
speak
walk/run
respond

Environment

stimuli

responses
Some Common Human Response Fallibilities

- Attend
- Observe
- Remember
- Think
- Act

Environment

Stimuli

- Anthropometric limits
- Neuromuscular limits
- Strength limits
- Response time considerations
- Speed/accuracy tradeoff
Some Action Fallibilities and Countermeasures

- **Common Fallibilities**
 - anthropometric limits
 - neuromuscular limits
 - strength limits
 - response time considerations
 - speed/accuracy tradeoff

- **Countermeasures**
 - Select/design controls for good performance.
 - Use discrete/continuous controls appropriately.
 - Use multi-rotation controls for precise settings, long ranges.
 - Design for movement compatibility (e.g., up/right/CW + down/left/CCW -).
 - Design controls to be easily identified (location, shape, color, type).
 - Do not overburden any one limb.
 - Combine functionally related controls.
 - Consider the least capable user WRT force, speed, accuracy, geometry.
 - Design for natural movement.
 - Keep control movements short.
 - Design for feedback.
 - Design control surfaces to prevent slipping.
 - Provide enough resistance to prevent inadvertent activation.
Some Action Fallibilities and Countermeasures (2)

• Common Fallibilities
 - anthropometric limits
 - neuromuscular limits
 - strength limits
 - response time considerations
 - speed/accuracy tradeoff

• Countermeasures
 - Design workstations for:
 - visibility outside workstation (if appropriate)
 - visibility inside workstation (displays, controls, etc.)
 - accessibility of controls, tools ("let the small person reach")
 - body member support (arm/foot rests, etc.)
 - body member clearance ("let the large person fit")
 - clearance for clothing & personal equipment
 - restraint (if appropriate)
 - protection from injury
 - ease, speed, safety of entry & exit
 - consistency throughout
Metacognition

- Knowledge about knowledge, thinking about thinking
- Attention and timesharing (attention revisited)
 - Selective, focused, divided attention
- Mental effort and resource demand
 - Automatic vs control processing
 - Resource demand
 - Structural similarity
- Task/Attention management
 - Distractions, interruptions
 - “in-situ” distractions, interruptions
 - Task/Attention Management factors
 - Task importance
 - Task status
 - Task urgency
 - Salience of task-related stimuli
Attention In Multitasking

Attention In Multitasking

Attend

Remember

Think

Act

Observe

Environment

stimuli

responses
Attention In Multitasking

- Examples of multitasking
 - driver
 - pilot
 - etc.

- Challenges in multitasking (fallibilities)
 - distractions
 - interruptions
 - reduced performance

- Problems with multitasking: misallocation of attention
 - Driving while talking on cell phone about as risky as driving drunk.
 - 3,154 killed and 424,000 injured in motor vehicle crashes involving distracted drivers in 2013 in US.
 - OSU study of 324 aircraft accident reports: 80 attention errors in 76 (23%) of the accidents.
 - OSU/OHSU surgical simulator study: 8 out of 18 surgeons committed errors when distracted versus 1 out of 18 when not distracted.
Attention As Resource Allocation

Attend: Allocate Mental Resources To Tasks

. Mental resources allocated to various stages of several tasks

Environment

stimuli

responses
Mental Resources
Multiple Resource Theory (Wickens, 1984)

Sensing & Perception
(AORTA Observe)
Sensory Modalities

Vision (spatial)
Hearing (spatial)
Vestibular senses
Touch
Kinesthesis

Central Processing
(AORTA Remember & Think)
Mental Resources

Analog/Spatial Resources

Categorical/Symbolic/Verbal Resources

Responding
(AORTA Act)
“Effectors”

Hands
Feet
Body

Mouth
Tongue
Concurrent Multitasking

Task A
Task B

Performance

Time

Resources Allocated

To Task A
To Task B

100%
0%
Sequential Multitasking

Task Switching

Task A

Task B

* (distraction)

Task C

* (interruption)

Task D

(incomplete and forgotten ...)

Performance

Time
Countermeasures for Poor Multitasking

• Minimize multitasking
 – eliminate unnecessary tasks
 – shift secondary tasks to lower workload periods
 – declare no-distraction periods
 – reduce job scope

• Additional crew-members
• To-Do Lists / Checklists with placeholders
• Task displays salient in proportion to task priority
 (importance x status x urgency)
• Train primary tasks to proficiency to promote efficient timesharing
• Train operators to manage tasks properly
• Select operators with innate multitasking ability