About Me

Education:

B.S., M.S and Ph.D (2015) in Purdue University

Research Interests:

• Design Theory and Methods
• Digital Human Modeling
• Human Factors Engineering
• Systems Engineering
• Product Design and Development
• Industrial Design

Contact:

Onan Demirel
Assistant Professor
School of Mechanical, Industrial, and Manufacturing Engineering
Oregon State University
Email: onan.demirel@oregonstate.edu
Website (personal): www.onandemirel.com
Website (professional): http://design.engr.oregonstate.edu/demirel
322 Rogers Hall I (765) 409-9419 I Corvallis, OR 97331
About Me

Design Theory and Methods
Systems Engineering

Human Factors Engineering

Digital Human Modeling

http://www.onandemirel.com/3-research-2/3-2-themes/3-2-2-design-theory-and-methods/
http://www.onandemirel.com/3-research-2/3-2-themes/3-2-3-human-factors-engineering/
http://www.onandemirel.com/project/human-in-the-loop-vehicle-design/
WHAT IS DIGITAL HUMAN MODELING?
Digital Human Modeling

What is it?

What is DHM?

- is digital representation of the human inserted into a simulation or a virtual environment to facilitate prediction of **safety** and/or **performance**.

- includes:
 - visualization (**form**)
 - math/science (**function**)

Digital Human Modeling

What is it?

What is DHM used for?

- Safety and performance assessments via biomechanics and ergonomics
Digital Human Modeling

What is it?

Why is it important?

- can incorporate Human Factors Engineering design principles earlier in the product development

http://www.onandemirel.com/7-projects/
THE DEVELOPMENT OF DIGITAL HUMAN MODELS
Digital Human Modeling

Brief Research Background

- Early Models - (1960 - 1980):
 - Cockpit packaging and pilot ergonomics of military aircraft
 - Prediction of center of gravity, principal moments, product of inertia
 - Design of cockpit consoles, seats and seat belts

[Image: Vision envelope in a cockpit]
[Image: Unobscured rotation check]

Early Models - (1960s):
- Mostly in 2D - some in 3D
- Basic mathematical formulation (e.g., center of mass)
- Not focusing on design but mostly analysis of postures

The segmental method

Adapted from Hamil & Knutzen, 1995, Biomechanical basis of human movement, Baltimore, MD: Williams & Wilkins.
Digital Human Modeling

Brief Research Background

- Biomechanics Models - (1960 - 1980s):
 - Generic biomechanics models for predicting strength capabilities
 - Manual/occupational tasks represented: lifting, pushing, pulling
 - Anthropometry, posture and force parameters

![Digital Human Modeling](image-url)
Digital Human Modeling

Brief Research Background

- Biomechanics Models - (1960 - 1980s):
 - Static models - no consideration of dynamics human postures
 - Variations of people from military and limited civilian data base
 - Anthropometry, posture and force parameters

Digital Human Modeling

Brief Research Background

- **Biomechanics Models - (1960 - 1980s):**
 - Anthropometry: people are different!
 - Considering variation in design process.

- Statistical DHM models bring anthropometry, motion and ergonomics capabilities to design of workplaces and product design.
- CAD integration
Digital Human Modeling

Brief Research Background

 - Advanced 3D models with higher visual and physical realism.
 - Motion Capture
Digital Human Modeling

Brief Research Background

- Models with Technology Integration - (2000 - now):
 - Beyond traditional statistical biomechanics and ergonomics
 - Technology integration:
 • markerless motion capture,
 • haptic devices and feedback,
 • immersive and virtual reality
 • digital twins
 •

Digital Human Modeling

Brief Research Background

- Models with Technology Integration - (2000 - now):
 - Computer driven models
 - High-fidelity postures and motion

Fig. 2 Skin rigging: (a) Automatic rigging; (b) manual rigging

Fig. 6 Snapshots of Santos throwing an object

Fig. 8 Sequential snapshots of Santos moving a 10-lb box from a lower shelf to a higher shelf. (a) without any torque limits on the spine, and (b) with torque limit on the spine (time progression from left to right)
Digital Human Modeling

Brief Research Background

- Towards Multi-physics Model (2020s and beyond):
 - Realistic Visualization
 - Anthropometry
 - Predictive Posture
 - Micro - Macro Motion
 - Cognitive Aspects
 - Analysis Modules
 - Quick Modeling
 - Segmentation - DOF

Multi-physics Integration

Human-in-the-loop vehicle development (Parametric modeling, Fluid dynamics, biomechanics analysis and virtual reality integration)

http://www.onandemirel.com/project/human-in-the-loop-vehicle-design/
DIGITAL HUMAN MODELING
&
ENGINEERING DESIGN
Designing with DHM:

- Before *physical prototypes* are built, engineering can:
 - implement proactive ergonomics in product design
 - evaluate human-product/environment interactions

- Working on *digital prototypes* via DHM has the potential to reduce:
 - design costs
 - time-to-market
 - the risk of injury
 - design errors
Digital Human Modeling

Design Connection

How Humans Factors Typically Considered?

Reactive Approach

Societal Need
Clarify Problem
Develop Concepts
Embody Design
Detail Design
Product that meets need

CAD → CAE → Prototype → Human Subject

Digital Human Modeling

Design Connection

An Alternative Approach?

Proactive Approach

Societal Need

Clarify Problem

Develop Concepts

Embody Design

Detail Design

Product that meets need

https://www.caricos.com/cars/vw/2012_volkswagen_up/images/76.html
https://i.ytimg.com/vi/eHUfeJE0k_c/maxresdefault.jpg
http://www.supercarreviewonline.com/cars/new-car-reviews/1502-new-audi-r8-prototype-first-drive/
Why DHM?

Detailed Computational Human Factors Engineering

<table>
<thead>
<tr>
<th>Reactive - Physical Human Studies</th>
<th>vs.</th>
<th>Proactive - Digital Human Modeling</th>
</tr>
</thead>
<tbody>
<tr>
<td>expensive (time & finances)</td>
<td></td>
<td>cheap(er)</td>
</tr>
<tr>
<td>slow</td>
<td></td>
<td>fast(er)</td>
</tr>
<tr>
<td>sequential / one at a time</td>
<td></td>
<td>parallel</td>
</tr>
<tr>
<td>only few-parameters to check</td>
<td></td>
<td>multi-purpose</td>
</tr>
<tr>
<td>….</td>
<td></td>
<td>….</td>
</tr>
</tbody>
</table>

https://www.caricos.com/cars/v/ww/2012_volkswagen_up/images/76.html
Why DHM?
Overall Design Cost and Time Reduction!

DIGITAL HUMAN MODELING & ENGINEERING DESIGN OF COMPLEX SYSTEMS
Why is this important?

Developing better products

- Especially for design that are hard to "prototype"

Humans are not replaceable!

Human Factors in Complex Systems

Biodynamic Responses

- Underwater shock produced by an underwater explosion remains one of the biggest threats to ships and shipboard personnel.

- What is an underwater shock?
 - Extremely high acceleration
 - Very short duration.

- Each ship hull, engine, superstructure needs to pass this test

- Internal structure including crew space needs to provide safe working environment.
Humans are not replaceable!

Human Factors in Complex Systems

Predicting Biodynamic Responses

- What are the options here?

- Relatively simplified version:

![Diagram](image)

Fig. 1. Simplified mechanical system representing the human body sitting upright in a chair subjected to vertical shock.

Humans are not replaceable!

Human Factors in Complex Systems

Predicting Biodynamic Responses

- What are the options here?

 - Actual data collection via crash test dummies:

Warrior Injury Assessment Manikin (WIAMan)
https://www.aerodefensetech.com/component/content/article/adt/features/articles/27963
Humans are not replaceable!

Human Factors in Complex Systems

Predicting Biodynamic Responses

- What are the other options here?

 - Digital Human Models with Multi-Physics Simulations

https://altairhyperworks.com/partner/hubyx