2019

Middle Willamette Watershed

AUSTIN HOUSER GIS IN WATER RESOURCES http://web.engr.oregonstate.edu/~houserau/

CE 413 3/12/19

Table of Contents

Introduction	-2
Project Overview	-3
Maps	-5
Methods	-12
Results and Discussion	·13
Reference	16

Table of Figures

Figure 1	4
Figure 2	5
Figure 3	6
Figure 4	7
Figure 5	8
Figure 6	9
Figure 7	10
Figure 8	11
Figure 9	2
Figure 10	3
Figure 11	12

Table of Charts

Table 1	13
Table 2	13
Table 3	13
Table 4	14

Introduction

For my term project I am going to investigate collected data on the middle Willamette Watershed in Oregon. I chose this watershed, because in my capstone project I'm in charge of water resources for our project. We are trying to make an intersection at Clow Corner and Oregon 99 West near Monmouth safer. For my capstone I want to implement a culvert system for the roadway at the intersection and for that I will need rainfall, soil, land use land cover, and storm water runoff data. I didn't want to just examine the small project site at the intersection, so I chose to look into the entire HUC-8 that encompasses it.

Figure 9: Street view of the watershed area

Figure 10: Satellite view of the watershed area

Project Overview

I originally found the location I wanted to investigate by going to the Clow Corner intersection in Oregon on Data Basin and using that areas HUC-8. The HUC-8's name is the Middle Willamette watershed and its 8 digit ID is 17090007. The area of the Watershed is 455039.91 acres or 1841.48 square kilometers. A majority of the watershed is in the Willamette Valley so it's flat land that is surrounded by mountains. The elevation of the watershed ranges from 2.63 meters to 1079 meters high, but it on average under 100 meters. The main feature of the watershed is the Willamette River that flows through the middle. Looking at the Land Use Land Cover map the majority of the watershed is hay/pasture and cultivated crops. There is also evergreen forest, shrubs, herbaceous, developed land of all intensities, open water, mixed forest, and woody wetlands covering the watershed. This project is important because this watershed covers a large portion of the middle of Oregon and the analysis shows data for one of the most important rivers in Oregon, the Willamette River.

I gathered data for ArcGIS on GIS data gateway for 5 counties that are all a part of the Middle Willamette watershed. The counties are Clackamas, Yamhill, Washington, Polk, and Marion. The watersheds projection is Oregon UTM Zone 10 North and so is all of the other pieces of data using my geodatabase. The data that I used for the map includes:

- Precipitation (inches) Polygon or characterized as points
- NHD Data points that show events in the flow lines Point
- Waterbodies Polygon
- 30x30 DEM Raster
- HUC 8 Polygon
- Land Use Land Cover Raster (30x30)

Data that I created using the previous data sets include:

- Drainage Point Point
- Longest Flow Path Catchment Line
- Drainage Line Line
- Catchment Polygon
- Watershed Slope Raster (30x30)
- Stream and Stream link Line
- FAC Raster (30x30)
- FDR Raster (30x30)
- Sink Fill Raster (30x30)

Figure 1: Projection: Oregon UTM Zone 10 North

Figure 2: DEM of the Watershed in meters

Figure 3: Land Use Land Cover of the watershed

Figure 4: Middle Willamette Watershed highlighting flow lengths

Figure 5: Middle Willamette Watershed showing drainage lines and Catchments

Figure 6: Precipitation in Middle Willamette

Figure 7: Flow Direction of the Watershed

Figure 8: Flow Accumulation of Watershed

Methods

Once the data was gathered from data gateway I clipped all of the data sets that I had to fit my HUC 8 watershed. This took a while since I had 5 different sets of data to sift through and clip. When I had to combine the DEM's I used Mosaic to new raster and then once I had one DEM I used clip management instead of analysis because it was a raster. The DEM still didn't completely match the boundary of the watershed so I clipped the previous DEM clip using image analysis with the watershed selected.

Now that all the data is clipped into the watershed it can be analyzed. I did hydro network analysis using the flow lines and the watershed data. These were the steps:

- Fill the sinks in the DEM
- Created the flow direction of the watershed
- Created the flow accumulation of the watershed
- Raster Calculator to find the bigger streams
- Defined the streams and then linked them
- Created the drainage line and points of the streams
- Created the Catchment polygons for the drainage line
- Created the longest flow path for the catchments
- Created the watershed's slope

Figure 11: Model Builder for major parts of ArcHydro analysis

Results and Discussion

OBJECTID_1*	Shape *	OBJECTID	PERMANE	FDATE	RESOLUTION	GNIS_ID	LENGTHKM	REACHCODE	FLOWDIR	WBAREA_PER	FTYPE	FCODE	FIPS_C	Shape_Length
817	Polyline	3176182	147808940	2/24/2012	2		7.376	17090007000544	1		460	46003		7374.414823

Table 1: Intersection stream flow line Attribute Table

Field	Value
FID	5
Shape	Polygon
PrecipInch	43
FIPS_S	41
Inches	43
Shape_Length	297698.378372
Shape_Area	112563554.510194

Table 2: Intersection precipitation

OBJECTID_1 *	Shape *	OBJECTID	PERMANE	FDATE	RESOLUTION	GNIS_ID	GNIS_NAME	LENGTHKM	REACHCODE	FLOWDIR	WBAREA_PER	FTYPE	FCODE	FIPS_C	Shape_Length
53	Polyline	1671373	147814420	6/13/2014	2	01158060	Willamette River	0.652156	17090007000197	1	{3F0AB72B-797	558	55800		650.8461
75	Polyline	2743487	147814364	6/13/2014	2	01158060	Willamette River	1.783202	17090007000070	1	{3F0AB72B-797	558	55800		1784.382256
191	Polyline	8351128	147814498	6/13/2014	2	01158060	Willamette River	0.270462	17090007000741	1	{3F0AB72B-797	558	55800		270.055477
250	Polyline	10006688	147814425	6/13/2014	2	01158060	Willamette River	0.403815	17090007000200	1	{3F0AB72B-797	558	55800		403.321293
288	Polyline	11186814	147814430	6/13/2014	2	01158060	Willamette River	0.588082	17090007000202	1	{3F0AB72B-797	558	55800		587.530797
381	Polyline	13698604	147814502	6/13/2014	2	01158060	Willamette River	0.59852	17090007005952	1	{3F0AB72B-797	558	55800		597.357801
414	Polyline	14514297	147814366	6/13/2014	2	01158060	Willamette River	0.709002	17090007000072	1	{3F0AB72B-797	558	55800		708.068956
473	Polyline	18345512	147814434	6/13/2014	2	01158060	Willamette River	1.600299	17090007000206	1	{3F0AB72B-797	558	55800		1598.437036
489	Polyline	18841601	147814373	6/13/2014	2	01158060	Willamette River	4.791755	17090007000100	1	{3F0AB72B-797	558	55800		4787.32408
503	Polyline	19400566	147814429	6/13/2014	2	01158060	Willamette River	1.807295	17090007000202	1	{3F0AB72B-797	558	55800		1806.754015
694	Polyline	451218	147814497	6/13/2014	2	01158060	Willamette River	0.814556	17090007000740	1	{3F0AB72B-797	558	55800		813.215869
889	Polyline	4905326	147814427	6/13/2014	2	01158060	Willamette River	0.304677	17090007000200	1	{3F0AB72B-797	558	55800		304.937125
947	Polyline	6744780	147814352	6/13/2014	2	01158060	Willamette River	1.679694	17090007000065	1	{3F0AB72B-797	558	55800		1676.933208
958	Polyline	7424044	147814432	6/13/2014	2	01158060	Willamette River	0.744526	17090007000204	1	{3F0AB72B-797	558	55800		744.806099
1216	Polyline	11309116	147814422	6/13/2014	2	01158060	Willamette River	0.970609	17090007000199	1	{3F0AB72B-797	558	55800		970.834128
1269	Polyline	12276040	147814423	6/13/2014	2	01158060	Willamette River	1.266192	17090007000200	1	{3F0AB72B-797	558	55800		1267.628369
1450	Polyline	15267627	147814552	6/13/2014	2	01158060	Willamette River	0.572175	17090007003243	1	{3F0AB72B-797	558	55800		571.242342
1507	Polyline	18345510	147814418	6/13/2014	2	01158060	Willamette River	0.509298	17090007000196	1	{3F0AB72B-797	558	55800		508.289107
1508	Polyline	18345513	147814353	6/13/2014	2	01158060	Willamette River	3.002568	17090007000066	1	{3F0AB72B-797	558	55800		3002.348697
1620	Polyline	19757575	147814399	6/13/2014	2	01158060	Willamette River	0.445406	17090007000171	1	{3F0AB72B-797	558	55800		444.770555
1910	Polyline	970909	147814506	6/13/2014	2	01158060	Willamette River	1.521304	17090007000838	1	{3F0AB72B-797	558	55800		1520.429472
1974	Polyline	2370654	147814358	6/13/2014	2	01158060	Willamette River	1.114019	17090007000067	1	{3F0AB72B-797	558	55800		1112.637932
2064	Polyline	4656199	147814357	6/13/2014	2	01158060	Willamette River	0.271546	17090007000067	1	{3F0AB72B-797	558	55800		271.083573
2082	Polyline	4905327	147814361	6/13/2014	2	01158060	Willamette River	0.801072	17090007000070	1	{3F0AB72B-797	558	55800		801.257517
2101	Polyline	5618186	147814433	6/13/2014	2	01158060	Willamette River	0.303091	17090007000205	1	{3F0AB72B-797	558	55800		303.458602
2487	Polyline	12665301	147814356	6/13/2014	2	01158060	Willamette River	1.336629	17090007000067	1	{3F0AB72B-797	558	55800		1334.754575
2539	Polyline	13830871	147814398	6/13/2014	2	01158060	Willamette River	2.152128	17090007000170	1	{3F0AB72B-797	558	55800		2148.998184
2769	Polyline	19757573	147814435	6/13/2014	2	01158060	Willamette River	1.237935	17090007000207	1	{3F0AB72B-797	558	55800		1238.434984
2783	Polyline	20126792	{0644E266-	6/13/2014	2	01158060	Willamette River	1.065897	17090007000071	1	{3F0AB72B-797	558	55800		1065.317123
2803	Polyline	20421817	147814419	6/13/2014	2	01158060	Willamette River	1.28854	17090007000197	1	{3F0AB72B-797	558	55800		1286.795239
2823	Polyline	20805554	147814365	6/13/2014	2	01158060	Willamette River	1.93842	17090007000071	1	{3F0AB72B-797	558	55800		1938.675431
2070	Dalulina	22464767	447044404	£119/001A	2	1044E00E0	Willomette Diver	0 205027	17000007000100	4	1950 4 5795 707	220	550NN		2014 6220146
• • 1	→ H	💻 (185 o	ut of 7281 S	elected)											

Table 3: Willamette River Attribute Table

Table 4: USGS graphs to find flow rates

I looked into the Clow Corner Road and Oregon 99 W intersection area and saw the length of the seasonal stream and how it flows. The Stream flows from North to South into the Willamette River. It's 7.4 km long and that area gets around 43 inches of precipitation a year. I'm going to use this data to find out how big of culverts I need to place to properly guide the water through the stream in a peak 100 year storm. Unfortunately I couldn't create the data for flow rates in this project with the data that was available to me, but I used the rational method on my capstone project to complete this part of my data.

I analyzed the streams as a whole for the HUC 8 watershed, but I also looked into the Willamette River since it's the biggest feature that's included. I found out by doing the Flow direction that the river flows from South to North which is rare in the Pacific Northwest. There was 185 pieces to analyze and the length of the river for this portion of it was 225.3 kilometers. If I was able to find flow rates I'm sure that the Willamette Rivers would stand out as the highest by far for this watershed as well, considering it's a major river in Oregon.

The limitations of my analysis of the Middle Willamette watershed were that I'm a student with limited time to dedicate to proper procedures. My biggest gripe is that I couldn't get the flow rates because my analysis would look so more appealing on maps if I could show the rivers with the highest flows, where they peak, and where they drain into. I believe I still did a lot of analysis for this watershed and the only thing I really wish I could calculate is the flow rates, but I could analyze the vast amounts of USGS data for specific dates to gather flow rates for specific parts of any river in Oregon. I could

use this to find peak flow rates in the Willamette River even though no GIS data was available on their site.

References

- How to Clip Rasters to Polygon Boundaries in ArcGIS. (2018, February 17). <u>Retrieved from https://gisgeography.com/clip-rasters-arcgis-polygon-boundary/</u>
- Oregon Geospatial Enterprise Office. (n.d.). Retrieved from <u>https://www.oregon.gov/geo/Pages/projections.aspx</u>
- Data Basin. (n.d.). Retrieved from https://databasin.org/
- (n.d.). Retrieved from https://waterdata.usgs.gov/or/nwis/