
CS 161 Recitation
Worksheet: Week 2

Terms to define
rvalue vs. lvalue, pre and post increment/decrement, %

Design and Testing (Assignment #2)
Design is very important when developing programs and there are a variety of ways to approach
it. You may draw pictures, write it out in prose or structured text, use pseudo code, and more!
The point of design is to give you a blueprint to follow while you are coding. This saves time
debugging your program as you can catch mistakes early. It is better to spend one hour of
designing than it is to spend five hours debugging.

George Polya developed a well-known model for problem solving in mathematics that is
based on these 4 principles.

• Understanding the problem. (Recognizing what is asked.)
• Devising a plan. (Responding to what is asked.)
• Carrying out the plan. (Developing the result of the response.)
• Looking back. (Checking. What does the result tell me? Did I do it right?)

Polya’s steps 1, 2, and 4 do not directly deal with writing the solution (in programming
that is the C++ code itself), but rather, the steps you need to make sure you write a
correct solution/program that solves the given problem statement. With this said, make
yourself familiar assignment #2 and Polya’s steps 1, 2, and 4.

Understanding the Problem
In your own words, explain what YOU think the problem is asking you to do. Document
your uncertainties about the problem and anything else that you feel was unclear or
vague. This is to ensure that YOUR understanding matches MY understanding of the

problem☺

Devising a Plan/Design
Provide an algorithm/pseudo code to help solve the problem. In addition, draw
pictures/flow charts to help you devise your plan, as well as any other design decisions
you make, such as how to manage your time, how to decompose the problem, where to
start first, etc.

Looking back/Testing
This includes any checking/self-reflection you did while solving the problem, which
includes using a calculator to make sure the output is correct, testing to make sure your
code executes correctly and behaves the way you expect under specific circumstances,
using sources of information to make sense of the results, etc. However, you need to
think about the input prior to implementation!!!

Please see an example of this document: Polya_template.pdf

http://classes.engr.oregonstate.edu/eecs/fall2017/cs161-001/assignments/Polya_template.pdf
http://classes.engr.oregonstate.edu/eecs/fall2017/cs161-001/assignments/Polya_template.pdf

Using Assignment #2, as a group, answer the following questions:

Understanding the Problem – Do you understand everything in the problem? Do you
understand what is meant by “there must be at least five different paths or solutions
to complete the adventure” and “there must be an element of chance that would
change a user’s chosen path”?

Design – What are the steps to create this adventure game? What are the steps for
handling bad input? Write the flow-chart and/or pseudo-code for these steps.

Testing – Create a test plan with the test cases (bad, good, and edge cases). What
do you hope to be the expected results?

