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• DP = recursion (divide-n-conquer) + caching (overlapping subproblems)

• the simplest example is Fibonacci

1

naive recursion 
without 

memoization:
O(1.618...n)

def fib(n):
    if n <= 2:
        return 1
    return fib(n-1) + fib(n-2)

fibs={1:1, 2:1}
def fib1(n):
    if n not in fibs:
        fibs[n] = fib1(n-1) + fib1(n-2)
    return fibs[n]

DP1: top-down with memoization:O(n)

f(n) = f(n� 1) + f(n� 2)

f(1) = f(2) = 1

def fib0(n):
    a, b = 1, 1
    for i in range(3, n+1):
        a, b = a+b, a
    return a

DP2: bottom-up: O(n)
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Number of Bitstrings

• number of n-bit strings that do not have 00 as a substring

• e.g. n=1:  0, 1;     n=2:   01, 10, 11;  n=3:   010, 011, 101, 110, 111

• what about n=0?

• first bit “1” followed by f(n-1) substrings

• first two bits “01” followed by f(n-2) substrings

2

f(n) = f(n� 1) + f(n� 2)

f(1) = 1

f(2) = 3
f(1)=2, f(0)=1
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Max Independent Set

• max weighted independent set on a linear-chain graph

• e.g.   7 -- 2 -- 3 -- 5 -- 8

• subproblem: f(n) -- max independent set for a[1]..a[n]

3

f(n) = max{f(n� 1), f(n� 2) + a[n]}
f(1) = 1

f(0) = 0

f(0)=0; f(1)=a[1]? better: f(0)=0; f(-1)=0



Summary

• Dynamic Programming = divide-n-conquer + overlapping

• “distributivity” of work:   a*c+b*c+a*d+b*d = (a+b)*(c+d)

• two implementation styles

• 1. recursive top-down + memoization

• 2. bottom-up

• also need backtracking for recovering best solution

• three steps in solving a DP problem

• define the subproblem

• recursive formula

• base cases
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