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This result indicates that the center frequency wy is reduced, and the quality factor has Increaseq
over its enhanced value Q in Eq. (4.140); the realized parameters are

wy Qo '
~ s e=———=—VI+e=0/1+¢ 4.
wor T Or 1= 207 Q (4.152)

and the realized gain is approximately unaffected by the opamp, H, = Hp of Eq. (4.14 1). For
instance, for the design parameters in Example 4.10 we have from Eq. (4. 150

200 1 3 1

T WGl = K2 ~ 1500/125 (1 —0.156)

that is, the frequency error equals —1.7% and the Q error is +1.7%. In the Delyiannis-Friend
circuit with no Q enhancement, we had K = 0 and Qo = Q = 10; the error then becomes

20 20

= = =0.17
* = WG ~ 15007123

and the errors would be equal to —8% and +8% for frequency and 0, respectively, as was
observed in Example 4.9. We note, therefore, that Q enhancement brings two notable advan-
tages for the small price of two resistors. The component ratio is substantially reduced (from
400 in Example 4.9 to nine in Example 4.10) and the errors in frequency and quality factor
are significantly smaller (by about a factor of five in these examples). Whenever the use of
power, considerations of space, and cost are of prime concern, the single-amplifier Q-enhanced
Delyiannis—Friend biquad is gencrally the most versatile and least sensitive option. For cases
of medium and high Q, we will therefore in the remainder of the book mostly use the circuit
in Fig. 4.37 when a single-amplifier biquad is needed.

4.5.3 Rauch Filters

Another popular SAB (Single-Amplifier Biguad) multiple-feedback circnit is the so-called
Rauch filter (Radio Telemetry by 1. L. Rauch, 1956). It is shown in Fig. 439 in its low-
pass configuration. Observe that this circuit has the same topology as the Delyiannis—Friend
(Fig. 4.35) circuits, but the Rauch filter places resistors and capacitors in different circuit ~

Figure 4.39 A lowpass Rauch filter section.
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pranches and has been found particularly convenient for building lowpass functions. Due to its
SAB structure, it should be clear that by choosing different configurations for the passive ele-
ments, bandpass or highpass filters can also be built; indeed, the Rauch filter can be configured
to realize finite transmission zeros by feeding V3 directly to the inverting opamp input, V..,
through an additional RC admittance. However, Rauch circuits have béen applied most widely
as lowpass filters used as band-limiting, anti-aliasing, and reconstruction filters for digital and
sampled-data systems, and we shall limit our discussion to all-pole lowpass filters. The circuit !
has low sensitivities to component tolerances (see Chapter 12), is easy to adjust, is absolutely
stable, and, as all single-opamp filters, is efficient in its use of space and power. To analyze the
circnit’s performance, we start as usual with the node equation at the inverting opanp input

node:
V.. (5Cy + G2) = sCVa + GV

With V.. = —Va/A this equation becomes

SCQ, + G

Va (SC'z + "

) = —GaVx {4.153)

At the node labeled V, we sum the currents to get

Vi (G + Gz + Ga + 5C1) = GaV1 + G1 V2 — GaVa /A (4.154)

and combining these two equations results in

sChRy 41 G
V [(sCsz + —Zmﬁ»-—) (G1 + Ga + Ga +5C1) + G1 — -«f] = -GV

that is, the transfer function is

Vi~ 2 +5(Gr+ Gat G/CL+ GG /(CiCo) +¢ '

where

_Llba Gi+G+G G (G1 -+ G3) Gy
E—A[s +S(———~«-m——cl 7 + Cz)+—~u—~—w—clcz ] (4.156)

is the error term caused by the finite opamp gain.
Let us for now assume ideal opamps. Evidently, then, with A = oo we get & = 0 and
obtain from Eq. (4.155) dc gain, pole frequency, and quality factor as

(3 [G1Ga '
Ho = — = 4.157a, b
=5 @y .G ( a, b)

0= — VGG - VC1/C2 (4.157¢)
JG1/Ga + /GaG1 + Ga/4/G1Gy  ~/G1/G2 (1 + Ho) + VG2 /G
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As mentioned earlier, the main reason for the dip and the subsequent rise in gain at high
frequencies of the lowpass response is the output resistance of the opamp. Note that the
gain at s = jay is T(jwp) = KQ = 14.06, or 23 dB. We mentioned carlier that the EWB
“measurement” is actually based on a SPICE simulation; we have shown in Fig 4.34b the
SPICE results to be able to display directly both Vip and Vigp simultaneously.

Since the RC—CR transformation did not change the filter poles, the earlier warning concerning
the sensitivity of O to the gain K is still valid, as are the discussion and results on the effect of
finite opamp gain. Observe further that if a highpass with smaller gain is required, a procedure
analogous to the one used for the lowpass in Fig. 4.31b can be used. The difference is that now
we have a capacitor in series with the input so that we obtain a capacitive voltage divider with
elements aCy and (1 — @) C. For example, if in the previous example a high-frequency gain of
0 dB is specified, i.e., a = 1/K = 0.357, the C = 0.1-uF capacitor will have to be split into a
series capacitor of 35.7 nF and a shunt capacitor of 64.3 nl%.

4.5.2 The Single-Amplifier Biquad (SAB)

A useful bandpass circuit using only one operational amplifier was developed by T. Delyiannis
(1968) and J, J. Friend (1970). 1t 1s shown in its bandpass configuration in Fig. 4.35. Both
capacitors are labeled C because these filters are notmally built with identical capacitors. We
can determine the circuit’s operation by writing a node equation for the inverting input terminal
of the opamp and one for the node labeled Vy. The two equations are

(25C + G1) Vi = aG1Vy + 5CV + sCV_ {4.124)
(sC + Gy Vo = sCV, + G.V (4.125)

with
V. =—Vs/d @.126)

Figure 4.35 Delyiannis-Friend bandpass circuit.
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We have again assumed finite opamp gain A to be able to investigate later which effect
may have on filter parameters with no need to repeat the analysis. For an ideal opamp, V_ -

0 and the terms multiplied by V_ will simply be absent. To solve these equations for
transfer function Vo/Vy, we solve Eq. (4.125) for V, and insert the resulf into Eq. (4.124)

We find
1 sC+ Gy
=—-—— |G
Vx sC ( 2+ A ) VZ @
and
1 sC+ Gy sC
— G C——j=-—
Va [SC' (Gz + i ) 2sC+ G+ ) :I a1V
This equation gives us the transfer function as
Vo N(s) ( A ) saGy/C
T = = = =t = — 4.127
TwToe T \wA) e, ey e ¢
c 1+A4 c2

The parameter a to set the gain is obtained by a feed-in voltage divider in the same manner as
for the Sallen—Key circuit in Fig, 4.31b. We observe that the first effect of finite opamp gain is
the muliiplying factor A/(1+A). This is simply the gain of a voltage buffer, Eq. (2.82), and can
be neglected for frequencies less than the opamp’s unity-gain frequency, f < £, The second
effect is determined by the term (Gy/C) /(1 + A) in the denominator, We shall investigate its
consequences later and assume for now an ideal opamp, i.e., we consider the ideal transfer
function

saCG _ saG1/C
P24+ 2BCG+ GGy 52 +52G2/C + G1Go) C?

T(s) = (4.128)

Letus rewrite Bq. (4.128) in the standard form with center frequency wq and quality factor O,

= 2o oH@o/Qo)

Vi 215 (wo/ Qo) +

{4.129)

We can then identify the filter parameters as

1 1 1 Ry 1 Ry 2
—_ e = — CRy = — —_ d H=-a—= 2 130
o ‘/RIRZCZ Qo= sCR, 21’R1 an 2R, aly  (4.130)

Conversely, we can also express the element values directly in terms of the filter parameters.
From Eq. (4.130) we find the design equations as follows:

1 R,
RiRy = ~—, =% =405 and a=
1R, a2 R N

(4.131)

203
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Figure 4.9 The Tow--Thomas biquad with normalized elements,

Figure 4.10 The Tow—Thomas biquad.

and making the connections suggested by the labels at the terminals of the three modules
results in the full circuit in Fig. 4.9. This filter is the so-called Tow-Thomas biquad (Tow, 1968;
Thomas, 1971). To see how the elements of the circuit enter the transfer function explicitly, let
us label them as in Fig. 4.10. Rontine analysis results in the lowpass and bandpass functions

_ /(B3R C1Cy)
= o) + Ry (4.273)
Ti(s) = (~5CaRe) X [Ty ()] = ———_R1/R3) - s/(R, C)

27
FHS/RIC) T 1/ ReReCiCyy (A2

The circuit cannot realize the highpass output because we have chosen to merge the swnming

ghpass output is required, an additional opamp is
g operation (Fig, 2.292) and the integration (Fig. 3.26a)

block with the first infegrator. If the hi

needed to permit realizing the summin
separately.
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Comparing Eq. (4.27a) to the standard form of Bq. (4.17), we identify the appropriate
coefficients with the element values as '

1 Ry Gy Ry
S — = d H=== 4.28
RaRyC1Ca g an ( )

+/RaRy [N R3

We can now determine the element values to satisfy the given design parameters. This is a
typical situation in active filter design: we have more components (here six)-than parameters
(here three). We will therefore select arbitrarily three of the components and then examine the
consequences on the remaining three. Since we used frequency scaling (wo = 1) and intend
to use magnitude scaling as well, we make the following choices:

2 _
wy =

61=C2=1 and Rg4=1

and obtain from Eq. (4.28)
Ri=0, Ry=1, and Ry= 1/H

These element values give us exactly the circuit previously derived in Fig. 4.9.
An important property of the biguad circuit is that it can be orthogonally tuned. By this

we mean that

1. Ry can be adjusted to a specified value of wo.

2. R, can then be adjusted to give the specified value of  without changing wp, which -
has already been adjusted.

3. Finally R3 can be adjusted to give the desired value of H or gain for the circuit, without
affecting either wp or @, which have already been set.

These steps are often called the nuning algorithm, This algorithm provides for orthogonal
tuning. If this tuning is not possible, then the tuning is called iterative, meaning that we try
to adjust successively each of the tuning elements until all specifications are met. Orthogonal
tuning is always much preferred, especially when the filter is to be produced on a production
line with a laser used to adjust each circuit element value.

An example will help us understand the design process:

exanele (B

Alowpass filter is to be designed whose poles in the normalized s-plane are located at —0.577+
j0.8165. The dc (@ = 0) gain is to be 2. The frequency is scaled by wy == 20,000 rad/s (fp =
3183 Hz). Find the values of the pole frequency and pole quality factor, and design a circuit
to realize the specifications. In your design, assume ideal opamps, but test the circuit with
LM741 opamps and comment on the results.




