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Abstract. This paper attacks a Japanese syllable-substitution cipher.
We use a probabilistic, noisy-channel framework, exploiting various Japanese
language models to drive the decipherment. We describe several innova-
tions, including a new objective function for searching for the highest-
scoring decipherment. We include empirical studies of the relevant phe-
nomena, and we give improved decipherment accuracy rates.
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1 Introduction

In this paper, we use natural language processing techniques to attack a Japanese
substitution cipher. In a substitution cipher, every token of a natural language
(plaintext) sequence is replaced by a cipher token, according to some substitution
key.

For example, an English plaintext:
“HELLO WORLD ...”

may be enciphered as:
“NOEEI TIMEL ...”

according to the key:
P: ABCDEFGHIJKLMNOPQRSTUVWXYZ
C: XYZLOHANBCDEFGIJKMPQRSTUVW

If the recipients of the ciphertext message have the substitution key, they
can use it (in reverse) to recover the original plaintext. Interestingly, a third
party who intercepts the message may be able to guess the original plaintext by
analyzing the repetition patterns in the ciphertext.

From a natural language perspective, we can view this cryptanalysis task as
a kind of unsupervised tagging problem [1]. We must tag each ciphertext token
with some element of the plaintext vocabulary. The resulting tag sequence must
make sense, so we use language modeling (LM) techniques to rank proposed de-
cipherments. We also need search techniques to find high-ranking decipherments
quickly.



Fig. 1. Original Uesugi cipher key in
Japanese

1 2 3 4 5 6 7

1 i ro ha ni ho he to

2 ti ri nu ru wo wa ka

3 yo ta re so tu ne na

4 ra mu u <> no o ku

5 ya ma ke hu ko e te

6 a sa ki yu me mi si

7 <> hi mo se su n <>

Fig. 2. Transliter-
ated version of the checkerboard-style key
used for encrypting the Uesugi cipher

In this paper, we attack a particular Japanese syllable-substitution cipher
from the Warring States Period, said to be employed by General Uesugi Kenshin.1

The cipher employs the checkerboard-style key shown in Figures 1 and 2. The
key is filled out according to the i-ro-ha alphabet, which uses each Japanese
syllable exactly once. To encode a message, we look up each syllable in the key,
and we replace it with a two-digit number. The first digit is the column index,
and the second digit is the row index.

For example, the plaintext:
“wa ta ku si ...”

is enciphered as:
“62 23 74 76 ...”

Note that the key contains ka but not ga. In this system, plaintext ga is
enciphered in the same way as ka, i.e., as 72. Likewise, go is enciphered the same
as ko, and gu is enciphered the same as ku, and so forth. Note that this means the
recipient may generate several readings from the cipher and must use common
sense to determine which reading is most sensible. Alternatively, the sender can
try to rephrase the original message in order to avoid unintended ambiguity.

Variations of the system exist. For example, instead of two digits, two char-
acters can be used, so that the ciphertext has the outward appearance of written
language. Also, the key can be scrambled periodically to increase security.

The goal of cryptanalysis is to take an intercepted number sequence and guess
a plaintext for it, without the benefit of the key. In this paper, we investigate
the number sequence in Figure 3.

1 http://www.samurai-archives.com/kenshin.html
http://en.wikipedia.org/wiki/Cryptography in Japan
http://global.mitsubishielectric.com/misty/tour/stage2/index.html
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Fig. 3. Encrypted Uesugi cipher sequence containing 577 syllables

2 Previous Work

In the past, researchers have explored many strategies for attacking decipher-
ment problems [2, 3, 4]. We follow a probabilistic approach, as suggested by
Knight et al. [5]. That paper proposes a noisy-channel model of ciphertext pro-
duction. First, a plaintext e is produced according to probability P(e). Then,
the plaintext is encoded as ciphertext c, according to probability P(c|e). We es-
timate an n-gram model for P(e) on separate plaintext data. We then adjust the
P(c|e) parameter values in order to maximize the probability of the observed
(ciphertext) data. This probability can be written:

P (c) =
∑

e

P (e) · P (c|e) (1)

The P(c|e) quantity is the product of the probabilities of the individual token
substitutions that transform e into c, i.e., the substitution probabilities make up
the guessed key. Knight et al. [5] propose the EM algorithm [6] as a method to
guess the best probabilistic values for the key. Once the key is settled on, the
Viterbi algorithm can search for the best decipherment:

argmaxeP (e|c) = argmaxeP (e) · P (c|e) (2)

Knight et al. [5] also develop a novel technique for improving decipherment
accuracy. Prior to decoding, they stretch out the channel model probabilities,
using the Viterbi algorithm to instead search for:

argmaxeP (e|c) = argmaxeP (e) · P (c|e)3 (3)



Finally, they provide an evaluation metric (number of guessed plaintext to-
kens that match the original message), and they report results on English letter
substitution decipherment.

3 Present Contributions

The novel contributions of this paper are:

– We attack a more difficult cipher system. The Uesugi cipher has more charac-
ters than English, it has no word boundaries, and even the correct key yields
multiple decipherment candidates. (This last feature makes it unsuitable for
methods such as [7]).

– We attack cipher lengths that are not solved by low-order language models.
We present an empirical study of training sizes, perplexities, and memory
requirements for n-gram language models, and we relate language-model
perplexity to decipherment accuracy.

– We find that higher-order n-gram models paradoxically generate worse deci-
pherments, according to the method of [5]. We invent an adjustment to the
EM objective function that solves this problem. This method allows much
more accurate decipherment of shorter ciphers.

– We study the impact of random restarts for EM (not employed by [5] for
letter substitution ciphers), and we find additional significant effects on ac-
curacy.

4 Experimental Set-up

In order to train language models over Japanese syllable sequences, we obtain a
roomaji version2 of the book Tale of Genji (c. 1021 AD). We process the roomaji
into syllables and remove typographical errors. The final sequence contains ap-
proximately one million syllables and 65 unique syllable types. We split this data
into three parts:

– LM training data (900,012 syllables).
– LM smoothing data (1419 syllables).
– Plaintext messages (various sizes).

We encipher the plaintext messages by first replacing ga with ka, and so
forth, and then making substitutions according to the hidden i-ro-ha table 2.
Our ciphertexts contain 46 unique types. Three of the cells in the 7 × 7 i-ro-ha
table are unused in the cipher system.

Our evaluation metric for decipherment is the same as [5]—we count the
number of matches between the guessed decipherment sequence and the original
message. Note that a successful decipherment must not only re-create the correct

2 http://etext.virginia.edu/japanese/genji/roman.html
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Fig. 4. Relationship between LM memory size and LM entropy. Plotted points repre-
sent language models trained on different amounts of data and different n-gram orders.

key, but it must determine (using plaintext context alone) whether a cipher token
should be decoded as ka or ga, etc.

The most common syllable in our data is to. The baseline of replacing every
ciphertext token with to yields an accuracy of 4%.

5 Experiments

To recap (from Equation 1), we search for values of the probabilistic substitution
table P(c|e) that maximize P(c):

P (c) =
∑

e

P (e) · P (c|e)

P(c|e) is a 65 x 46 table. We begin with uniform probabilities, so that each
of the 65 plaintext characters maps to any of the 46 ciphertext numbers with
probability 1/ 46.

5.1 Language Models

Decipherment requires knowledge about the general plaintext language (in our
case, Japanese), and this is captured in the P(e) language model. In our exper-
iments, we create n-gram models (at various orders) out of plaintext training
data (of various sizes). In collecting n-gram counts, we drop singletons when
n>3. We smooth by interpolating with lower-order n-grams. We estimate one
smoothing λ per n-gram order.
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Fig. 5. Effect of LM training data size on decipherment error for the Uesugi cipher using
3-gram LM with (a) original channel decoding (b) cubing the channel probabilities
before decoding (Knight et al. [5])

We represent LMs as weighted finite-state acceptors (WFSAs). For each LM,
we measure its memory size (number of WFSA transitions) and its perplex-
ity on held-out data. We measure perplexity on the plaintext messages, though
of course, these messages are not used in the construction of any LMs. Fig-
ure 4 shows the relationship between memory requirements and LM entropy in
bits/character (perplexity = 2entropy) of various LMs. Note that for any partic-
ular memory size a machine may have, we can select the LM order that gives
the best perplexity.

We use EM to search for the best table P(c|e). EM is an iterative algorithm
that improves P(c) from one iteration to the next, until convergence. Because
exact convergence is typically not reached, we terminate when the iteration-over-
iteration change in P(c) falls below a set threshold. We terminate early if 200
iterations are reached.

Figure 5 shows decipherment results when we use a 3-gram LM trained on
various amounts of data. We can see that more LM data (i.e., more knowledge
about the Japanese language) leads to better decipherment. Figure 5 also con-
firms that maximizing Equation 3:

argmaxeP (e|c) = argmaxeP (e) · P (c|e)3

is better than maximizing Equation 2:

argmaxeP (e|c) = argmaxeP (e) · P (c|e)



Ciphertext 11 53 33 54 64 51 67 71 36 41 72 67 13 34 55 72 34 11 16 25
23 26 45 14 27 23 25 27 35 42 73 72 41 11 71 11 16 67 55 71
73 36 36 31 41 31 16 14 32 72 57 74 33 75 71 36 56 36 23 ...

Original message i du re no o ho n to ki ni ka n yo u go ka u i a ma
ta sa bu ra hi ta ma hi ke ru na ka ni i to i a n go to
na ki ki ha ni ha a ra nu ga su gu re te to ki me ki ta ...

Best decipherment (3-gram LM) i du re no o ho n to ki ni ka n yo u go ka u i a ma
ta sa bu ra hi ta ma hi ke ru na ka ni i to i a n go to
na ki ki ha ni ha a ra zu ka su gu re te to ki me ki ta ...

Fig. 6. Sample from the 577-syllable Uesugi cipher system showing (a) Ciphertext (b)
Original message (c) Best decipherment using 3-gram LM (errors underlined)
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Fig. 7. Effect of random restarts on de-
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Fig. 8. Effect of random restarts on de-
cipherment with a 3-gram model.

Figure 6 shows the ciphertext, original message, and best decipherment ob-
tained from using the 3-gram LM.

5.2 Random Restarts

The results so far employ a uniform starting condition for P(c|e). We were sur-
prised to find that different starting points result in radically different deci-
pherment strings and accuracies. Figure 7 and 8 shows the result of the uniform
starting condition along with 29 random restarts using the 2-gram and 3-gram
LMs, respectively. Each point in the scatter-plot represents the results of EM
from one starting point. The x-axis gives the entropy in bits/character obtained
at the end of an EM run, and the y-axis gives the accuracy of the resulting de-
cipherment. We observe a general trend—when we locate a model with a good
P(c), that model also tends to generate a more accurate decipherment. This is



a 16? 1.00

ba
31? 0.77
45 0.16
71 0.07

be
61? 0.67
71 0.32

bi
76 0.47
73 0.46
13 0.06

bo
51? 0.83
45 0.17

bu
45? 0.56
53 0.44

da 23? 1.00

de
75? 0.54
52 0.46

di
12? 0.79
46 0.21

do
71? 0.66
76 0.21
36 0.12

du
31 0.53
53? 0.24
34 0.22

e 65? 1.00

ga 72? 1.00

ge
35? 0.80
23 0.20

gi 13 1.00

go 55? 1.00

gu 74? 1.00

ha
31? 0.93
76 0.07

he 61? 1.00

hi 27? 1.00

ho
51? 0.92
31 0.08

hu
45? 0.91
27 0.09

i 11? 1.00

ka 72? 1.00

ke 36 0.09

ki
36? 0.97
34 0.03

ko
55? 0.97
51 0.03

ku

74? 0.71
36 0.15
63 0.09
67 0.05

ma

25? 0.87
74 0.06
53 0.04
12 0.03

me 56? 1.00

mi
66? 0.82
75 0.10
22 0.08

mo 37? 1.00

mu
34 0.99
31 0.01

na 73? 1.00

n
67? 0.94
54 0.06

ne 56 1.00

ni 41? 1.00

no 54? 1.00

nu
32? 0.54
62 0.45

o 64? 1.00

ra
14? 0.79
61 0.12
72 0.10

re
33? 0.91
14 0.09

ri
22? 0.96
56 0.04

ro 21? 1.00

ru
42? 0.90
36 0.09

sa
26? 0.78
72 0.22

se
27 0.39
47? 0.31
26 0.30

si 76? 1.00

so 43? 1.00

su

57? 0.34
66 0.18
53 0.17
34 0.17
71 0.14

ta
23? 0.90
43 0.07
41 0.03

te
75? 0.98
65 0.01

ti 12? 1.00

to 71? 1.00

tu
53? 0.72
76 0.15
12 0.13

u
34? 0.93
12 0.07

wa
31 0.76
54 0.24

wo 52? 1.00

yo
13? 0.83
66 0.09
37 0.08

yu 46? 1.00

za 73 1.00

ze 61 1.00

zi ? 1.00

zo
51 0.86
12 0.09
37 0.05

zu
57? 0.70
16 0.16
32 0.15

Fig. 9. Substitution table learnt from best 3-gram decipherment showing P(c|e) values.
Correct entries are marked by ?.

good, because it means that EM is maximizing something that is of extrinsic
value. Figure 8 shows two distinct clusters. In one cluster, EM finds a very bad
P(c), and it returns a nonsense decipherment. In the other cluster, EM finds
something much more reasonable. It is interesting that human cryptanalysts ex-
perience much the same phenomenon. When one has mentally committed to the
correctness of a small set of substitutions (e.g.,“72 must be ro!”), it can be very
hard to escape during subsequent analysis.

Figure 9 shows the learnt substitution table from the best 3-gram decipher-
ment with correct entries marked with ?.

When we use random restarts for decipherment, we cannot simply pick the
string with the best accuracy, as this would entail looking at the answer. Instead,
we pick the string that results from the model with the best P(c). As seen in
Figure 8, the best P(c) does not guarantee the best accuracy. However, we are
able to significantly improve on the uniform-start decipherment through random
restarts. Because of this, the rest of the experimental runs in this paper employ
30 random restarts.

5.3 Objective Function

We intuitively feel that more knowledge of Japanese will lead to better deci-
pherments. This is true for long ciphers like the one we have seen so far. What
about shorter ciphers? How do the different n-gram LMs perform when used
for deciphering shorter ciphers? We split the original 577-syllable cipher in half



Table 1. Decipherment error rates with different LMs on long/short ciphers

LM model Long Cipher (577 syllables) Short Cipher (298 syllables)

2-gram 0.46 0.89

3-gram 0.12 0.96

5-gram 0.09 0.95

to create a shorter 298-syllable cipher, and apply the same decipherment strat-
egy. Table 1 shows best decipherment error rates associated with different LM
orders (trained on the same data) for the two ciphers (longer and shorter ver-
sions). We observe that we can get better accuracies with higher n-gram LMs for
the longer cipher (577 syllables). However on the shorter cipher (298 syllables),
when we increase the n-gram order of the LM, we find that decipherment sur-
prisingly gets worse. Inspection reveals that the 5-gram decipherment contains
many more actual Japanese words. While the text is nonsense, from a certain
distance it appears more Japanese-like than the 2-gram decipherment. When we
take measurements, we find that the 5-gram LM strongly prefers the (nonsense)
string from its decipherment over the (sensible) correct answer, in terms of P(e).
It is therefore quite opinionated in the wrong direction. We find that the 2-gram
LM is less opinionated—it still prefers its decipherment over the correct answer,
but not to such a degree.

The consequence of the 5-gram model being so wrongly opinionated is that
the substitution model probabilities learn to become more fuzzy than usual, in
order to accommodate the LM’s desire to produce certain strings. The learnt
substitution table is much more non-deterministic than the true substitution
table (key).

We remedy this. Recall from Equation 1 that EM’s objective function is:

P (c) =
∑

e

P (e) · P (c|e)

Here, the P(e) factor carries too much weight, so in order to reduce the “vote”
that the LM contributes to EM’s objective function, we create a new objective
function:

P (c) =
∑

e

P (e)0.5 · P (c|e) (4)

Note that this is substantially different from the proposal of [5] to stretch
out the substitution probabilities after decipherment has finished. Instead, we
actually modify the objective function EM uses during decipherment itself.

Table 2 shows the improvements we get from the new objective function at
various n-gram orders for the two ciphers. The results are much more in accord
with what we believe should happen, and gets us to where better n-gram models
give us better decipherment error on short ciphers. In addition, the new objective



Table 2. Decipherment error rates on two different Uesugi ciphers using (a) Original
EM objective function (b) New objective function (square-rooting LM)

LM model Long Cipher (577 syllables) Short Cipher (298 syllables)
EM(original) EM(new objective fn.) EM(originial) EM(new objective fn.)

2-gram 0.46 0.29 0.89 0.78

3-gram 0.12 0.05 0.96 0.78

5-gram 0.09 0.02 0.95 0.61
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Fig. 10. LM entropy vs. decipherment error rate (using various n-gram order LMs on
the 577-syllable Uesugi cipher)

function substantially improves long-cipher decipherment error over the methods
of [5].

To sum up our experiments on the Uesugi cipher, Figure 10 shows a nice
correlation between LM entropy and end-to-end decipherment accuracy.

6 English Results

For direct comparison with [5], we include graphs with English letter-substitution
results. Figures 11-13 give the results.

Table 3 shows improvements achieved on a 98-letter English cipher when
using the new objective function introduced in Section 5.3. For the graphs in
Figures 12 and 13, we also improve LM smoothing and thereby obtain further
improvements in accuracy (down to an error-rate of 0.02 for the 7-gram model
trained on 7 million letters).
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7 Conclusion

We have studied a particular Japanese syllable cipher. In doing so, we have
made several novel improvements over previous probabilistic methods, and we
report improved results. Further improvements in LMs may lead to accurate
decipherment of shorter texts, and further algorithms may lead to accurate de-
cipherment of more complex Japanese cipher systems, including translation to



Table 3. Decipherment error rates on a 98-letter English cipher using (a) Original
EM objective function (Knight et al. [5]) (b) New objective function (square-rooting
LM). All the LMs are trained on 1.4 million letters of English data, and use 10 random
restarts per point

LM model EM(original) error-rate EM(new objective fn.) error-rate

2-gram 0.41 0.43

3-gram 0.59 0.16

5-gram 0.53 0.11

7-gram 0.65 0.11

other languages.
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