Unit 1: Sequence Models

Lectures 2-3: Finite-State Acceptors/Transducers
This Week: Finite-State Machines

• Finite-State Acceptors and Languages
 • DFAs (deterministic)
 • NFAs (non-deterministic)
• Finite-State Transducers
• Applications in Language Processing
 • part-of-speech tagging, morphology, text-to-sound
 • word alignment (machine translation)
• Next Week: putting probabilities into FSMs
Q1: how to formally define a *language*?

- a language is a *set of strings*
 - could be finite, but often infinite (due to recursion)
 - \(L = \{ \text{aa, ab, ac, \ldots, ba, bb, \ldots, zz} \} \) (finite)

- English is the set of *grammatical English sentences*

- variable names in C is set of alphanumeric strings

Q2: how to *describe* a (possibly infinite) language?

- use a finite (but recursive) representation
- finite-state acceptors (FSAs) or regular-expressions
English Adjective Morphology

Figure 3.4 An FSA for a fragment of English adjective morphology: Antworth’s Proposal #1.

exceptions?
Finite-State Acceptors

- $L_1 = \{ \text{aa, ab, ac, ..., ba, bb, ..., zz} \}$ (finite)
 - start state, final states

- $L_2 = \{ \text{all letter sequences} \}$ (infinite)
 - recursion (cycle)

- $L_3 = \{ \text{all alphanumeric strings} \}$
More Examples

- $L_4 = \{ \text{all letter strings with at least a vowel} \}$

- $L_5 = \{ \text{all letter strings with vowels in order} \}$

- $L_6 = \{ \text{all 01 strings with even number of 0's and even number of 1's} \}$
English Adjective Morphology

Figure 3.4 An FSA for a fragment of English adjective morphology: Antworth’s Proposal #1.

Figure 3.5 An FSA for a fragment of English adjective morphology: Antworth’s Proposal #2.
More English Morphology

Figure 3.6 An FSA for another fragment of English derivational morphology.
Membership and Complement

- deterministic FSA: iff no state has two exiting transitions with the same label. (DFA)
- the language \(L \) of a DFA \(D \): \(L = L(D) \)
- how to check if a string \(w \) is in \(L(D) \) ? (membership)
 - linear-time: follow transitions, check finality at the end
 - no transition for a char means “into a trap state”
- how to construct complement DFA? \(L(D') = \neg L(D) \)
 - super easy: just reverse the finality of states :)
 - note that “trap states” also become final states
END OF WEEK I (half week)