Wireshark Lab 6: Ethernet and ARP vs.0
Due 12/4/22, 11:59 PM (Canvas)

In this lab, we’ll investigate the Ethernet protocol and the ARP protocol. Before beginning this
lab, you’ll probably want to review sections 6.4.1 (Link-layer addressing and ARP) and 6.4.2
(Ethernet) in the text. RFC 826 (https://www.rfc-editor.org/in-notes/std/std37.txt) contains the
gory details of the ARP protocol, which is used by an IP device to determine the IP address of a
remote interface whose Ethernet address is known.

1. Capturing and analyzing Ethernet frames
Let’s begin by capturing a set of Ethernet frames to study. Do the following:

e First, make sure your browser’s cache is empty. To do this under Mozilla Firefox, select
Tools->Clear Recent History and check the box for Cache. For Internet Explorer, select
Tools->Internet Options->Delete Files. Start up the Wireshark packet sniffer

e Enter the following URL into your browser
http://gaia.cs.umass.edu/wireshark-labs/HT TP-ethereal-lab-file3.html
Your browser should display the rather lengthy US Bill of Rights.

e Stop Wireshark packet capture. First, find the packet numbers (the leftmost column in the
upper Wireshark window) of the HTTP GET message that was sent from your computer
to gaia.cs.umass.edu, as well as the beginning of the HTTP response message sent to your
computer by gaia.cs.umass.edu. You should see a screen that looks something like this
(where packet 4 in the screen shot below contains the HTTP GET message)

https://www.rfc-editor.org/in-notes/std/std37.txt

M wi-Fi - O b4
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help
AB @ 1ERE | &= ==L L3
(W] pply a display filter __<Ctrl-/> =3 -]+
No. Time Source Destination Protacol Length Info 2
174 19.370866 2001: 2601:1c0:8202:145i TLSv1.2 112 Application Data
175 19.370866 2001: 2601:1c0:8202:145 TLSv1.2 204 Application Data
176 19.370940 2601:1c0:8202:1450:.. 2001:558: feed: 443 TCcP 74 65096 » 443 [ACK] Seq=1175 Ack=1226 Win=515 Len=0
- 177 19.371889 10.8.0.79 128.119.245.12 TCP 66 65283 » 88 [SYN] Seq=0 Win=64240 Len=8 MSS=1468 WS=256 SACK_
178 19.436311 2607:18b0:400e:cOc:.. 2601:1c0:8202:1450:... UDP 106 443 » 62753 Len=44
179 19.443429 2601:1c0:8202:1450:.. 2607:8b0:400e: cOc:.. UDP 95 62753 » 443 Len=33
180 19.472269 128.119.245.12 10.0.09.79 TCP 66 80 > 65283 [SYN, ACK] Seq=@ Ack=1 Win=29200 Len=@ MSS=1460 <
181 19.472432 10.9.0.79 128.119.245.12 TCP 54 65283 » 80 [ACK] Seg=1 Ack=1 Win=131328 Len=0
= 182 19.473051 10.0.0.79 128.119.245.12 HTTP 532 GET /wireshark-labs/HTTP-ethereal-lab-file3.html HTTP/1.1
183 19.573310 128.119.245.12 10.0.0.79 TCP 56 80 » 65283 [ACK] Seg=1 Ack=479 Win=30336 Len=0
184 19.621981 128.119.245.12 10.8.9.79 TCP 1514 8@ + 65283 [ACK] Seq=1 Ack=479 Win=38336 Len=146@ [TCP segme
185 19.623204 128.119.245.12 10.0.0.79 TCcp 1514 80 » 65283 [ACK] Seq=1461 Ack=479 Win=30336 Len=1460 [TCP se
186 19.623360 10.0.0.79 128.119.245.12 TCP 54 65283 » 8@ [ACK] Seq=479 Ack=2921 Win=131328 Len=0
187 19.624321 128.119.245.12 10.0.09.79 TCP 1514 8@ » 65283 [ACK] Seq=2921 Ack=479 Win=3@336 Len=146@ [TCP se
- 188 19.625370 128.119.245.12 10.0.0.79 HTTP 535 HTTP/1.1 200 OK (text/html) —
189 19.625569 10.0.0.79 128.119.245.12 TCP 54 65283 > 80 [ACK] Seq=479 Ack=4862 Win=131328 Len=0
190 19.636911 2601:1c0:8202:1450:.. 2607:f8b0:400e:cBc:.. UDP 95 62753 » 443 Len=33
191 19.667943 2607:18b0:400e:cOC:.. 2601:1cH:8202:1450:... UDP 87 443 > 62753 Len=25
192 19.697361 2601:1c0:8202:1450:.. 2607:18b0:400a:805:.. UDP 95 50524 » 443 Len=33
193 19.722844 2607:18b0:400a:805:.. 2601:1ch:8202:1450:.. UDP 87 443 » 50524 Len=25
194 19.856893 10.9.0.79 128.119.245.12 HTTP 478 GET /favicon.ico HTTP/1.1 w
< >

Frame 182: 532 bytes on wire (4256 bits), 532 bytes captured (4256 bits) on interface \Device\NPF_{9C40B8E9-C242-43EA-8DA3-28DOCCC4QE41}, id @
Ethernet II, Src: IntelCor_be:d@:3e (a@:d3:7a:be:d®:3e), Dst: ARRISGro_6e:95:fb (70:4f:b8:6e:95:fh)

Internet Protocol Version 4, Src: 10.6.0.79, Dst: 128.119.245.12
Transmission Control Protocol, Src Port: 65283, Dst Port: 80, Seq: 1, Ack: 1, Len: 478
Hypertext Transfer Protocol

70
a2
f5
a2
68
74
33
fa

2e
48

6e
fe
03
7a
6b
72
74
73

95
40
2]
00
2d
65
6d
74

fb
00
50
2]
6c
61
6c
3a

d3
a6
3b
45
62
2d
48
67

Ta
7f
ba
54
73
6c
54
61

be
10
69
20
2f
61
54
69

de
Ba
6f
2f
48
62
50
61

3e
@0
ds
77
54
2d
2f
2e

08
00
bc
69
54
66
31
63

00
af
de
72
50

2e
73

45
80
50
65
2d
6c
31
2e

p0-n z-->--E
@ 0w

P;; -io--NP
z--GE T /wires
hark-lab s/HTTP-e
thereal- lab-file

3.html H TTP/1.1
Host: g aia.cs.u

© 7 wireshark_Wi-FICRLGD1.pcapng

Packets: 261 - Displayed: 261 (100.0%) * Dropped: 0 (0.0%)

Profile: Default

Since this lab is about Ethernet and ARP, we’re not interested in IP or higher-layer

protocols. So let’s change Wireshark’s “listing of captured packets” window so that it
shows information only about protocols below IP. To have Wireshark do this, select
Analyze->Enabled Protocols. Then uncheck the IPv4 and IPv6 box and select OK. You
should now see a Wireshark window that looks like:

M ~wi-ri — O X
File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am . ® TRE Qea=mEF S =EqqaF
| |~'.pp|-_.-' a display filter ... <Ctrl-/> -+
No. Time Source Destination Protocol Length Info 2

176 19.370940 IntelCor_be:d@:3e ARRISGro_6e:95:fh Px86dd 74 IPv6

177 19.371889 IntelCor_be:d@:3e ARRISGro_6e:95:fb Px0300 66 IPv4

178 19.436311 ARRISGro_6e:95:fb IntelCor_be:d@:3e Ox86dd 106 IPv6

179 19.443429 IntelCor_be:d@:3e ARRISGro_6e:95:fh ex86dd 95 IPv6e

180 19.472269 ARRISGro_6e:95:fb IntelCor_be:d@:3e Px0800 66 IPv4

181 19.472432 IntelCor_be:d@:3e ARRISGro_6e:95:fb Px0300 54 IPv4

.473851 IntelCor_be:d@:3e ARRISGro_6e:95:fb 0x0800 532 IPv4

183 19.5733180 ARRISGro_6e:95:fb IntelCor_be:d@:3e 0x0800 56 IPv4

184 19.621981 ARRISGro_6e:95:fb IntelCor_be:d@:3e Px0800 1514 IPv4

185 19.623294 ARRISGro_6e:95:fb IntelCor_be:d@:3e Px0300 1514 IPv4

186 19.623360 IntelCor_be:d@:3e ARRISGro_6e:95:fb 0x0800 54 IPv4

187 19.624321 ARRISGro_6e:95:fb IntelCor_be:d@:3e Px0800 1514 IPv4

188 19.625370 ARRISGro_6e:95:fb IntelCor_be:d@:3e Px0300 535 IPv4

189 19.625569 IntelCor_be:d@:3e ARRISGro_6e:95:fb Px0300 54 IPv4

19@ 19.636911 IntelCor_be:d@:3e ARRISGro_6e:95:fb Bx86dd 95 IPv6 —

191 19.667943 ARRISGro_6e:95:fb IntelCor_be:d@:3e ox86dd 87 IPve

192 19.697361 IntelCor_be:d@:3e ARRISGro_6e:95:fb Px86dd 95 IPv6

193 19.722844 ARRISGro_6e:95:fb IntelCor_be:d@:3e Px86dd 87 IPv6

194 19.856893 IntelCor_be:d@:3e ARRISGro_6e:95:fb Px0800 478 IPv4

195 19.877082 IntelCor_be:d@:3e ARRISGro 6e:95:fb ox86dd 95 IPve

196 19.907726 ARRISGro_6e:95:fb IntelCor_be:d@:3e Px86dd 87 IPv6 o
< >

Frame 182: 532 bytes on wire (4256 bits), 532 bytes captured (4256 bits) on interface \Device)
Ethernet II, Src: IntelCor_be:d@:3e (a@:d3:7a:be:d@:3e), Dst: ARRISGro_6e:95:fb (70:4f:b8:6e:9
Data (518 bytes)

£ >
0000 70 Af b8 6e 95 fb be do 3e 08 @0 45 00 po-n--[E > E ~
02 06 fa Oe 40 00 80 @6 7f 10 Oa 00 00 4f 80 77 @ 0-w
£5 @c f 03 00 50 3b 3b b9 69 6Ff d5 bc 4e 50 18 P;; -io--NP
02 01 f7 7a 00 00 47 45 54 20 2f 77 69 72 65 73 z--GE T /wires

68 61 72 6b 2d 6c 61 62 73 2f 48 54 54 50 2d 65 hark-lab s/HTTP-e
74 68 65 72 65 61 6c 2d 6c 61 62 2d 66 69 6C 65 thereal- lab-file
33 2e 68 74 6d 6¢c 20 48 54 54 50 2f 31 2e 31 ed 3.html H TTP/1.1
Ba 48 6f 73 74 3a 20 67 61 69 61 2e 63 73 2e 75 Host: g aia.cs.u W

© 7 wireshark_Wi-FICRLGD1.pcapng Packets: 261 - Displayed: 261 (100.0%) * Dropped: 0 (0.0%) | Profile: Default

In order to answer the following questions, you’ll need to look into the packet details and packet
contents windows (the middle and lower display windows in Wireshark).

Select the Ethernet frame containing the HTTP GET message. (Recall that the HTTP GET
message is carried inside of a TCP segment, which is carried inside of an IP datagram, which is
carried inside of an Ethernet frame; reread section 1.5.2 in the text if you find this encapsulation
a bit confusing). Expand the Ethernet 11 information in the packet details window. Note that the
contents of the Ethernet frame (header as well as payload) are displayed in the packet contents
window.

Answer the following questions, based on the contents of the Ethernet frame containing the
HTTP GET message.

1. What is the 48-bit Ethernet address of your computer?

2. What is the 48-bit destination address in the Ethernet frame? Is this the Ethernet address
of gaia.cs.umass.edu? (Hint: the answer is no). What device has this as its Ethernet
address? [Note: Re-read pages 468-469 in the text and make sure you understand the
answer here.]

3. Give the hexadecimal value for the two-byte Frame type field. What upper layer protocol
does this correspond to?

4. How many bytes from the very start of the Ethernet frame does the ASCII “G” in “GET”
appear in the Ethernet frame?

Next, answer the following questions, based on the contents of the Ethernet frame containing the
first byte of the HTTP response message.

5. What is the value of the Ethernet source address? Is this the address of your computer, or
of gaia.cs.umass.edu (Hint: the answer is no). What device has this as its Ethernet
address?

6. What is the destination address in the Ethernet frame? Is this the Ethernet address of
your computer?

7. Give the hexadecimal value for the two-byte Frame type field. What upper layer protocol
does this correspond to?

8. How many bytes from the very start of the Ethernet frame does the ASCII “O” in “OK”
(i.e., the HTTP response code) appear in the Ethernet frame?

2. The Address Resolution Protocol

In this section, we’ll observe the ARP protocol in action. We strongly recommend that you re-
read section 6.4.1 in the text before proceeding.

ARP Caching

Recall that the ARP protocol typically maintains a cache of IP-to-Ethernet address translation
pairs on your comnputer The arp command (in both MSDOS and Linux/Unix) is used to view
and manipulate the contents of this cache. Since the arp command and the ARP protocol have
the same name, it’s understandably easy to confuse them. But keep in mind that they are
different - the arp command is used to view and manipulate the ARP cache contents, while the
ARP protocol defines the format and meaning of the messages sent and received, and defines the
actions taken on message transmission and receipt.

Let’s take a look at the contents of the ARP cache on your computer:

e MS-DOS. The arp command is in c:\windows\system32, so type either “arp -a” or
“c:\windows\system32\arp -a” in the MS-DOS command line (without quotation marks).

Linux/Unix/MacOS. The executable for the arp command can be in various places.
Popular locations are /shin/arp (for linux) and /usr/etc/arp (for some Unix variants).

The Windows arp command with “-a” will display the contents of the ARP cache on your
computer. Run the arp command.

9.

Write down the contents of your computer’s ARP cache. What is the meaning of each
column value?

In order to observe your computer sending and receiving ARP messages, we’ll need to clear the
ARP cache, since otherwise your computer is likely to find a needed IP-Ethernet address
translation pair in its cache and consequently not need to send out an ARP message.

MS-DOS. The MS-DOS arp —d * command will clear your ARP cache. The —d flag
indicates a deletion operation, and the * is the wildcard that says to delete all table
entries.

Linux/Unix/MacOS. The arp —d * will clear your ARP cache. In order to run this
command you’ll need root privileges. If you don’t have root privileges and can’t run
Wireshark on a Windows machine, you can skip the trace collection part of this lab and
just use the trace discussed in the earlier footnote.

Observing ARP in action

Do the following:

Clear your ARP cache, as described above.

Next, make sure your browser’s cache is empty. To do this under Mozilla Firefox, select
Tools->Clear Recent History and check the box for Cache. For Internet Explorer, select
Tools->Internet Options->Delete Files.

Start up the Wireshark packet sniffer

Enter the following URL into your browser

http://gaia.cs.umass.edu/wireshark-labs/HT TP-wireshark-lab-file3.html

Your browser should again display the rather lengthy US Bill of Rights.

Stop Wireshark packet capture. Again, we’re not interested in IP or higher-layer
protocols, so change Wireshark’s “listing of captured packets” window so that it shows
information only about protocols below IP. To have Wireshark do this, select Analyze-
>Enabled Protocols. Then uncheck the IPv4 and IPv6 box and select OK. You should
now see a Wireshark window that looks like:

M ethernet-ethereal-trace-1 - O X

File Edit View Go Capture Analyze Statistics Telephony Wireless Tools Help

Am:® RE Qe=EF & 2 aqaf
[|-|3|3I: a display filter ... <Ctrl-/> -] +
No. Time Source Destination Protocol Length Info
1 0.8060000 AmbitMic_a9:3d:68 Broadcast ARP 42 Who has 192.168.1.17 Tell 192.168.1.10
2 9.001018 LinksysG_da:af:73 AmbitMic_a9:3d:68 ARP 60 192.168.1.1 is at 00:06:25:da:af:73
3 0.001828 AmbitMic_a9:3d:68 LinksysG_da:af:73 0x0800 62 IPv4
4 2.962850 AmbitMic_a9:3d:68 LinksysG_da:af:73 0x0800 62 IPv4
5 8.971488 AmbitMic_a9:3d:68 LinksysG_da:af:73 0x0800 62 IPv4
6 13.542974 CnetTech_73:8d:ce Broadcast ARP 68 Who has 192.168.1.1177 Tell 192.168.1.
7 17.444423 AmbitMic_a9:3d:68 LinksysG_da:af:73 0x0800 62 IPv4
8 17.465902 LinksysG_da:af:73 AmbitMic_a9:3d:68 0x0800 62 IPv4
9 17.465927 AmbitMic_a9:3d:68 LinksysG_da:af:73 0x0800 54 IPv4
10 17.466468 AmbitMic_a9:3d:68 LinksysG_da:af:73 0x0800 686 IPv4
11 17.494766 LinksysG_da:af:73 AmbitMic_a9:3d:68 ax0800 68 TPv4
12 17.498935 LinksysG_da:af:73 AmbitMic_a9:3d:68 0x0800 1514 IPv4
13 17.500025 LinksysG_da:af:73 AmbitMic_a9:3d:68 0x0800 1514 Tpv4
14 17.508869 AmbitMic_a9:3d:68 LinksysG_da:af:73 0x0800 54 IPv4
15 17.527057 LinksysG_da:af:73 AmbitMic_a9:3d:68 0x0800 1514 IPv4
16 17.527422 LinksysG_da:af:73 AmbitMic_a9:3d:68 ax0800 489 TPv4
17 17.527457 AmbitMic_a9:3d:68 LinksysG_da:af:73 0x0800 54 IPv4
< >

Frame 1: 42 bytes on wire (336 bits), 42 bytes captured (336 bits)
Ethernet II, Src: AmbitMic_a9:3d:68 (80:d0:59:a9:3d:68), Dst: Broadcast (ff:ff:ff:ff:ff:ff)
Address Resolution Protocol (request)

0000 ff ff ff ff ff ff 0@ de 59 a8 3d 68 08 06 v-=h- -
@3 00 06 @4 00 01 0@ d0 59 a% 3d 68 c@ a8 @1 69 Y-=h i
00 00 60 00 00 00 c@ a8 01 o1
@ 7 ethernet-ethereal-trace-1 Packets: 17 - Displayed: 17 (100.0%) Profile: Default

In the example above, the first two frames in the trace contain ARP messages (as does the 6™
message).

Answer the following questions:

10. What are the hexadecimal values for the source and destination addresses in the Ethernet
frame containing the ARP request message?
11. Give the hexadecimal value for the two-byte Ethernet Frame type field. What upper
layer protocol does this correspond to?
12. Download the ARP specification from
https://www.rfc-editor.org/in-notes/std/std37.txt . A readable, detailed discussion of ARP
is also at http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html.
a) How many bytes from the very beginning of the Ethernet frame does the ARP
opcode field begin?
b) What is the value of the opcode field within the ARP-payload part of the Ethernet
frame in which an ARP request is made?
c) Does the ARP message contain the IP address of the sender?

https://www.rfc-editor.org/in-notes/std/std37.txt
http://www.erg.abdn.ac.uk/users/gorry/course/inet-pages/arp.html

d) Where in the ARP request does the “question” appear — the Ethernet address of
the machine whose corresponding IP address is being queried?

13. Now find the ARP reply that was sent in response to the ARP request.

a) How many bytes from the very beginning of the Ethernet frame does the ARP
opcode field begin?

b) What is the value of the opcode field within the ARP-payload part of the Ethernet
frame in which an ARP response is made?

c) Where in the ARP message does the “answer” to the earlier ARP request appear —
the IP address of the machine having the Ethernet address whose corresponding
IP address is being queried?

14. What are the hexadecimal values for the source and destination addresses in the Ethernet
frame containing the ARP reply message?

15. Open the ethernet-ethereal-trace-1 trace file in http://gaia.cs.umass.edu/wireshark-
labs/wireshark-traces.zip. The first and second ARP packets in this trace correspond to an
ARP request sent by the computer running Wireshark, and the ARP reply sent to the
computer running Wireshark by the computer with the ARP-requested Ethernet address.
But there is yet another computer on this network, as indicated by packet 6 — another
ARP request. Why is there no ARP reply (sent in response to the ARP request in packet
6) in the packet trace?

What to hand in

Answer the questions above, based on YOUR Wireshark experimentation, except for question
10-15. For your reference, the pre-captured trace files are at: http://gaia.cs.umass.edu/wireshark-
labs/wireshark-traces.zip

Instructions:

1. When answering the questions above, you should print out the screenshot(s) and indicate
where in the screenshot(s) you’ve found the information that answers the following
questions.

2. When you hand in your assignment, annotate the output so that it’s clear where in the
output you’re getting the information for your answer.

http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip
http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip
http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip
http://gaia.cs.umass.edu/ethereal-labs/ethereal-traces.zip

