Dynamic Programming 101

- DP = recursion (divide-n-conquer) + caching (overlapping subproblems)
- the simplest example is Fibonacci

\[f(n) = f(n-1) + f(n-2) \]
\[f(1) = f(2) = 1 \]

DP1: top-down with memoization: $O(n)$

```python
def fib1(n):
    if n not in fibs:
        fibs[n] = fib1(n-1) + fib1(n-2)
    return fibs[n]
```

DP2: bottom-up: $O(n)$

```python
def fib0(n):
    a, b = 1, 1
    for i in range(3, n+1):
        a, b = a+b, a
    return a
```

naive recursion without memoization: $O(1.618...^n)$

```python
def fib(n):
    if n <= 2:
        return 1
    return fib(n-1) + fib(n-2)
```
Number of Bitstrings

- number of \(n \)-bit strings that do **not** have 00 as a substring
- e.g. \(n=1 \): 0, 1; \(n=2 \): 01, 10, 11; \(n=3 \): 010, 011, 101, 110, 111
- what about \(n=0 \)?
- first bit “1” followed by \(f(n-1) \) substrings
- first two bits “01” followed by \(f(n-2) \) substrings

\[
f(n) = f(n - 1) + f(n - 2)
\]

\(f(1)=2, f(0)=1 \)
Max Independent Set

- max weighted independent set on a linear-chain graph
- e.g. 7 -- 2 -- 3 -- 5 -- 8
- subproblem: $f(n)$ -- max independent set for $a[1]..a[n]$ (1-based index)

$$f(n) = \max \{ f(n - 1), f(n - 2) + a[n] \}$$

$f(0) = 0; f(1) = a[1]$?

better: $f(0) = 0; f(-1) = 0$

```python
def max_wis2(a):
    best, back = {-1: 0, -2: 0}, {}  # 0-based index!
    n = len(a)
    for i in range(n):
        best[i] = max(best[i-1], best[i-2]+a[i])
        back[i] = best[i] == best[i-1]
    return best[n-1], solution(n-1, a, back)

def solution(i, a, back):
    if i < 0:
        return []
    return solution(i-1, a, back) if back[i] else (solution(i-2, a, back) + [a[i]])
```

recursively backtrack the optimal solution
Summary

• Dynamic Programming = divide-n-conquer + overlapping subproblems

• “distributivity” of work:

\[(a \otimes c) \oplus (b \otimes c) \oplus (a \otimes d) \oplus (b \otimes d) = (a \oplus b) \otimes (c \oplus d)\]

• two implementation styles

 1. recursive top-down + memoization
 2. bottom-up

 also need backtracking to recover best solution (recommended: backpointers)

• three steps in solving a DP problem

 - define the subproblem
 - recursive formula
 - base cases
Deeper Understanding of DP

- **divide-n-conquer**
 - single divide, independent conquer, combine

- **DP = divide-n-conquer with multiple divides**
 - for all possible divide
 - divide
 - conquer with memoization
 - combine subsolutions using the combination operator \otimes
 - summarize over all possible divides using summary operator \oplus

- **multiple divides => overlapping subproblems**
 - each single divide => independent subproblems!

<table>
<thead>
<tr>
<th></th>
<th>\oplus</th>
<th>\otimes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fib</td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>MIS</td>
<td>max</td>
<td>+</td>
</tr>
<tr>
<td># BSTs</td>
<td>+</td>
<td>x</td>
</tr>
<tr>
<td>knapsack</td>
<td>max</td>
<td>+</td>
</tr>
<tr>
<td>shortest path</td>
<td>min</td>
<td>+</td>
</tr>
</tbody>
</table>
One-way vs. Two-way Divides

<table>
<thead>
<tr>
<th>Divide-n-Conquer</th>
<th>Two-way (Binary Divide)</th>
<th>One-way (Unary Divide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quicksort, best-case</td>
<td>Quicksort, worst-case</td>
<td></td>
</tr>
<tr>
<td>Mergesort</td>
<td>Quickselect</td>
<td></td>
</tr>
<tr>
<td>Tree traversal (DFS)</td>
<td>Binary search</td>
<td></td>
</tr>
<tr>
<td>Heapify (top-down)</td>
<td>Search in BST</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DP</th>
<th># of BSTs (hw5)</th>
<th>Fib, # of bitstrings (hw5)…</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal BST</td>
<td></td>
<td>Max indep. set (hw5)</td>
</tr>
<tr>
<td>RNA folding (hw10)</td>
<td></td>
<td>Knapsack (all kinds, hw6)</td>
</tr>
<tr>
<td>Context-free parsing</td>
<td></td>
<td>Viterbi (hw8)</td>
</tr>
<tr>
<td>Matrix-chain multiplication, …</td>
<td></td>
<td>LCS, LIS, edit-distance,…</td>
</tr>
</tbody>
</table>
Two Divides vs. Multiple Divides (# of Choices)

<table>
<thead>
<tr>
<th>DP</th>
<th>two divides</th>
<th>multiple divides</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fib, # of bitstrings (hw5)…</td>
<td># of BSTs (hw5)</td>
</tr>
<tr>
<td></td>
<td>max indep. set (hw5)</td>
<td>unbounded knapsack (hw6)</td>
</tr>
<tr>
<td></td>
<td>0-1 knapsack (hw6)</td>
<td>bounded knapsack (hw6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Viterbi (hw8)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RNA folding (hw10)</td>
</tr>
</tbody>
</table>
Viterbi Algorithm for DAGs

1. topological sort

2. visit each vertex v in sorted order and do updates
 - for each incoming edge (u, v) in E
 - use $d(u)$ to update $d(v)$: $d(v) \oplus = d(u) \otimes w(u, v)$
 - key observation: $d(u)$ is fixed to optimal at this time

 ![Diagram](image)

 - time complexity: $O(V + E)$
Variant 1: forward-update

1. topological sort

2. visit each vertex \(v \) in sorted order and do updates
 - for each outgoing edge \((v, u)\) in \(E \)
 - use \(d(v) \) to update \(d(u) \):
 \[
 d(u) \oplus = d(v) \otimes w(v, u)
 \]
 - key observation: \(d(v) \) is fixed to optimal at this time

- time complexity: \(O(V + E) \)
Variant 2: Recursive Descent

- Top-down Recursion + Memoization = Bottom-up
- Start from the target vertex, going backwards
 - remember each visited vertex
- Sometimes easier to implement
- There is a tradeoff b/w top-down and bottom-up
One-way vs. Two-way Divides (Graph vs. Hypergraph)

<table>
<thead>
<tr>
<th>Divide-n-Conquer</th>
<th>Two-way (Binary Divide)</th>
<th>One-way (Unary Divide)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Tree</td>
<td>quicksort, best-case</td>
<td>quicksort, worst-case</td>
</tr>
<tr>
<td></td>
<td>mergesort</td>
<td>quickselect</td>
</tr>
<tr>
<td></td>
<td>tree traversal (DFS)</td>
<td>binary search</td>
</tr>
<tr>
<td></td>
<td>heapify (top-down)</td>
<td>search in BST</td>
</tr>
<tr>
<td>DP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td># of BSTs (hw5)</td>
<td>Fib, # of bitstrings (hw5)...</td>
</tr>
<tr>
<td></td>
<td>optimal BST</td>
<td>max indep. set (hw5)</td>
</tr>
<tr>
<td></td>
<td>RNA folding (hw10)</td>
<td>knapsack (all kinds, hw6)</td>
</tr>
<tr>
<td></td>
<td>context-free parsing</td>
<td>Viterbi (hw8)</td>
</tr>
<tr>
<td></td>
<td>matrix-chain multiplication, ...</td>
<td>LCS, LIS, edit-distance,...</td>
</tr>
</tbody>
</table>
Viterbi Algorithm for DAGs

1. topological sort

2. visit each vertex \(v \) in sorted order and do updates
 - for each incoming edge \((u, v)\) in \(E \)
 - use \(d(u) \) to update \(d(v) \):
 \[d(v) \oplus = d(u) \otimes w(u, v) \]
 - key observation: \(d(u) \) is fixed to optimal at this time

\[\begin{align*}
 \begin{array}{c}
 u \\
 \end{array} & \quad \text{w}(u, v) \\
 \begin{array}{c}
 v
 \end{array}
\end{align*} \]

- time complexity: \(O(V + E) \)
Viterbi Algorithm for DAHs

1. topological sort

2. visit each vertex v in sorted order and do updates
 • for each incoming hyperedge $e = ((u_1, ..., u_{|e|}), v, w(e))$
 • use $d(u_i)$’s to update $d(v)$
 • key observation: $d(u_i)$’s are fixed to optimal at this time

\[
d(v) \oplus = d(u_1) \otimes d(u_2) \otimes w(e)
\]

• time complexity: $O(V + E)$ (assuming constant arity)
Example: RNA Folding and CKY Parsing

- typical instance of the generalized Viterbi for DAHs
- many variants of CKY ~ various topological ordering
- Nussinov algorithm in RNA is almost identical to CKY but w/o overcounting

all $O(n^3)$
k-best Viterbi

- simple extension of Viterbi to solve k-best on graphs and hyper graphs