## **Midterm Examination**

## **ECE 580**

# October 20, 2021

# Open book

1. Find the branch currents and the output voltage in this ladder. All impedances are 1 k $\Omega$ . Hint: think carefully before starting to calculate!



- 2. The two-port shown operates between two 50  $\Omega$  resistors, at  $\omega$  = 500 Mra/s.
  - (a) Find its scattering matrix.
  - (b) What are the properties of the circuit? What role does it play?



- 3.(a) Find the current gain  $A_i(j\omega)$  of the circuit shown.
  - (b) Find the radian frequency  $\omega_1$  where  $|A_i(j\omega_1)| = 1$ .



# **ECE 580 Midterm Examination Solutions**

1. Since  $e_1 = e_2 = e_3$ , all loop voltages are zero. No currents flow, and all node voltages including  $v_0$  are 1 V. Can also be seen by connecting the + terminals of the voltage sources.





1. Find the output voltage of the circuit shown using interreciprocity. All impedances are equal.



$$Z = 1$$

$$Z =$$

Assume  $\hat{j} = 1A$ , Then  $\hat{V}_1 = 1$ ,  $\hat{V}_2 = 2$   $\hat{j}_2 = 2$ ,  $\hat{V}_3 = \hat{J}_1 + \hat{J}_2 + \hat{V}_2 = 5$ Since  $\hat{j}_0 = +1$ , the actual currents are  $\hat{1}_1 = +1/8$ ,  $\hat{1}_2 = -1/4$ )  $\hat{1}_3 = -5/8$ Vo = 3 Riji = 1V, Predictable, surce

2. The two-port shown operates between two 50 ohm terminations at a frequency  $\omega = 500$  Mra/s. Find its scattering matrix.

$$|A| = \frac{1}{2} \sum_{x=0}^{30} \frac$$

- 3.(a) Find the current gain  $A_l(j\omega)$  of the circuit shown.
  - (b) Find the radian frequency  $\omega_1$  where  $|A_i(j\omega_1)| = 1$ . unity gain fr



$$\omega_r^2 = \left[\frac{q_{ab}^2 - 1/r_{in}^2}{C_{in}^2 + 2C_{in}C_{fb}}\right]$$