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Thisresult indicates that the center fre

quency wp is reduced, and the quality factor has increased !
over its enhanced value QinEq. (4.1

40); the realized parameters are

wpp ~ 20 Qo

D Cr=—  TTs=0JIT
JTre 1-20% Y TE= Ve

and the realized gain is approximately unaffected by the opamp, H, =
instance, for the design p

Hp of Eq. (4.141). Fo
arameters in Example 4.10 we have fro

m Eq. (4.150)
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that is, the frequency error equals —

1.7% and the Q error is +1.7%.
circuit with no O enhancement, we

hadK:Oanon =0
20 20
= =—=___ _o17
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and the errors would be equal to
observed in Example 4.9. We not

In the Delyiannis—Frie
= 10; the error then becomes »

—8% and +8%

for frequency and Q, respectively, as w.
e, therefore, that

Q enhancement brings two notable

Figure 4.39 A lowpass Rauch filter section.
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branches and has been found particularly convenient for building lowpass functions. Due to its

SAB structure, it should be clear that by choosing different configurations for the passive ele-

ments, bandpass or highpass filters can also be built; indeed, the Rauch filter can be configured

to realize finite transmission zeros by feeding V directly to the inverting opamp input, V_,

through an additional RC admittance. However, Rauch circuits have been applied most widely
as lowpass filters used as band-limiting, anti-aliasing, and reconstruction filters for digital and
sampled-data systems, and we shall limit our discussion to all-pole lowpass filters. The circuit
has low sensitivities to component tolerances (see Chapter 12), is easy to adjust, is absolutely
stable, and, as all single-opamp filters, is efficient in its use of space and power. To analyze the
circuit’s performance, we start as usual with the node equation at the inverting opamp input

node:

V_ (sCy + G2) = sCVo + Ga Vi

With V_ = —V, /A this equation becomes

C,+G
Vs <SC2 + S—i:{——z-> = =GV (4.153)

At the node labeled V, we sum the currents to get
Vi (G1 + G2+ G3 +5C1) =G3V1 + Gi1Va — GV /A (4.154)
and combining these two equations results in

sCoRy + 1 G
V [(scsz + —%—Az——) (G1 + G2 + G3 +5C1) + Gy — 7;2‘] = -G3V

that is, the transfer function is

@ 2 L G2G3/(C1C6r) (4.155)
Vi 24 5(Gi+ G2+ G3)/C1+Gi1G2/(C1Ca) +¢ )

where
17, Gi+G+G G (G1+G3) G
_1 + 03 02) 1Tt 4.156
& A[s +s< c +C2>+ G ( )

is the error term caused by the finite opamp gain.
Let us for now assume ideal opamps. Evidently, then, with A = oo we get & = 0 and

obtain from Eq. (4.155) dc gain, pole frequency, and quality factor as

G3 G1G2
o = ! 4.157a,b
=73 @o .G ( a, b)

0= vCi/C = vCi/C 4.157¢)
JG1/Gz + NGa/G1 + G3 /GG, V/Gi/G2 (1 + Ho) + +/G2/Gr
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194 SECOND-ORDER LOWPASS AND BANDPASS FILTERS

Note that the transfer function is inverting; but we have defined the gain, Hy, as a pos
resistor ratio so that the minus sign will not permeate the equations. We observe again
is completely determined by ratios of like elements, but with no difference effects, so th:
can be designed very accurately. For positive elements Q is always positive, i.e., the
lowpass is unconditionally stable, in contrast to, e.g., the Sallen—Key circuit, where Qisse
the difference of component ratios, Eq. (4.103), and can become negative if the element,"ij
are inaccurate. Note that Q is usually small for lowpass filters; therefore, no excessively
element ratios will be required, and there is no need to enhance O through carefully sele
positive feedback as in the Delyiannis-Friend circuit. Clearly, by Eq. (4.157¢) the capac
ratio is proportional to Q2. Therefore, the Rauch circuit can generally not be recomm
for filters with large values of QO because it leads to an excessive capacitor spread. The
lowpass has five passive elements, but we have in a lowpass only three parameter
frequency wy, quality factor 0O, and gain Hy. Apparently this leaves us with two free compo
that can be determined from other constraints. However, note that by Eq. (4.157¢) all
components together determine Q. '

Although not critical for low-Q lowpass filters, let us nevertheless minimize the cape
ratio, C1/Cy: for given values of Hop and Q}{Ne reformat Egq. (4.157¢) into

2

G 2 2
S H
&) Q 2 + 0)

1

(1+HyG G 2
2 + Hp) Gy 2 ;
SR TS Yo “

and recognize that the term in brackets with Hy = G3/G; is of the form 1+ Hy (x +
with a minimum of 24/T+ Hp at x = 1. Clearly, then, if the minimum capacitor spread
important, the choice is

G .
= =1lie,Ri= {0+ H)R
1+ Hy) G, Le,Ri =1 +Hy)R,

Consequently, the lowest possible value of the capacitor ratio is C1/Cy = 402 1+ Hp),
for low-Q lowpass filters, where Hpisnear 1, Cy/Cy =~ 8Q2. If we were to choose simpl;
resistors of equal value, the dec gain would be fixed at Hy = 1 and, by Eq. (4.158), the rati
would be C1/C; = 90?2, only a small penalty.

To arrive at the component values from Eq. (4.157), a suitable method is then via
following five steps:

1. Choose R; and set R3 = RyHj to realize Hy. A suitable choice of R; is in the sa
range, say kiloohms, where all the resistors are expected to be. g

2. Thenset Ry = Ry /(1 + Hj) by Eq. (4.159) to minimize the capacitor ratio, or simpl
choose R, = R;.

3. Determine the capacitor product, C;Cy = 1 / (a%RgRl), to set w.

4. Determine the ratio C1/C; = Q2 [/Ra/Ry (1 + Ho) + RiJR] to set .
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5. The individual capacitors are found by multiplying and dividing, respectively, the
product C;C; and the ratio C1/C,.

In low-Q lowpass filters the errors in wg and Q arising from finite values of w; of real

opamps usually cause no problems; nevertheless, to get an understanding of the magnitudes
to be expected, let us analyze the effects.

The Effect of A(s) on the Rauch Lowpass Filter

We saw in Eq. (4.155) that the denominator of the transfer function contains an additive term
&, Eq. (4.156), which with Hy = G3/G1 and (G1 + G2 + G3)/C; = wp/Q is seen to equal

= = 1
& [s +s( + - 2) + wp (1+Ho)} (4.160)

so that the transfer function including the error can be written as

V2 A G2G3/(C1Cy)

Vi 1+A[,, @ 1 G Gy
= — 22 s+ ZH,
(s +sQ+w0 +1+AC2 s+c 0

A wiHo
T O1+A,  wo 9 G 2 Ho)
D122 1
s +SQ< TTiame) T\ T T4

Using the approximation A = w /s, Eq. (2.18), where for a lowpass filter |s| < w;, we har
1/(A+1) =s/(s+w)~s/w and A/(A+ 1) = wi/(s + @) & 1, s0 Eq. (4.161) becomes

(4.161

1% 2H,
2 -1 x @070

Vi = 2 le) wo wo ) 2
14+ ——= — {1+ —Q0H
S<+wtC2 +SQ +tho + wj

w§Ho/[1 + G2/ (@ C2)]

s2+sﬁ 1+ QHywo/wt w%
Q14+ G/(@C2) 1+ Ga/(wnCa)
H()a)r2

T 82+ o/ Qrtw?

(4.162)

Thus, within the approximations made, A does not affect the dc gain. The realized pole
frequency, wr, relative to the desired wg for Go/(wC2) < 1, is given by

& _ 1 gl_l_GL@__:l_chl@ (4.163)
Wy 14+ G/ (i Cy) 2 Chwo 2G1 w
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