FINAL EXAMINATION

ECE 580

December 14, 2023

1. Analyze the circuit shown. Warning: look for a shortcut!!

2. Analyze the circuit shown using inter-reciprocity.

For extra credit, find V_{1} and V_{2}.
3. The Rauch filter shown has a transfer function (assume ideal opamp)

$$
H(s)=\frac{1}{s^{2} \cdot R_{1} \cdot R_{2} \cdot C_{1} \cdot C_{2}+s \cdot C_{2} \cdot\left(R_{1}+R_{2}+\frac{R_{1} \cdot R_{2}}{R_{3}}\right)+\frac{R_{1}}{R_{3}}} .
$$

If $R_{1}=2 R_{2}=2 R_{3}$ and pole Q is $Q=1 / \sqrt{3}$, what should be the ratio C_{1} / C_{2} ?

For extra credit, find the requirements for the DC gain A_{0} and the pole Q so that the minimum capacitance spread (C_{1} / C_{2} or C_{2} / C_{1}) can be 1 . Hint: consider the requirements for A_{0} and Q so that there is real solution for R_{2} / R_{3} when $C_{1}=C_{2}$.

