CS 331: Artificial Intelligence
Adversarial Search

Games we will consider

Deterministic

Discrete states and decisions

Finite number of states and decisions
Perfect information i.e. fully observable
Two agents whose actions alternate

Their utility values at the end of the game are
equal and opposite (we call this zero-sum)

_

“It's not enough for me to win, | have to see
my opponents lose”

Which of these games fit the
description?

Two-player, zero-sum, discrete, finite, deterministic games of perfect information

What makes games hard?

 Hard to solve e.g. Chess has a search graph
with about 10%° distinct nodes

» Need to make a decision even though you
can’t calculate the optimal decision

* Need to make a decision with time limits

Formal Definition of a Game

A quintuplet (S, I, Succ(), T, U):

S Finite set of states. States include information on which player’s
turn it is to move.

| Initial board position and which player is first to move

Succ() Takes a current state and returns a list of (move,state) pairs, each
indicating a legal move and the resulting state

T Terminal test which determines when the game ends. Terminal
states: subset of S in where the game has ended

U Utility function (aka objective function or payoff function): maps

from terminal state to real number

Nim

Many different variations. We’ll do this one.

Start with 9 beaver logos

In one player’s turn, that player can
remove 1, 2 or 3 beaver logos

The person who takes the last beaver logo
wins

Nim

7
Notation: Max(llII)

A qUIntuplet (S, I, SUCC(), T, U) Who's move # matches left

S Max(11111), Max(I11), Max(I1), Max(l)
Min(1HT), Min(111), Min(11), Min(l)

| Max(H111)

Succ() Succ(Max(1111)) = {Min(111),Min(I11),Min(11)} Succ(Min(I111)) = {Max(l11),Max(11),Max(1)}
Succ(Max(I11)) = {Min(11),Min(1)} Succ(Min(111)) = {Max(11),Max(1)}
Succ(Max(I1)) = {Min(l)} Succ(Min(I1)) = {Max(l)}

T Max(1), Max(I1), Max(111), Min(l), Min(11), Min(l11)

U Utility(Max(1) or Max(I1) or Max(l11)) = +1,

Utility(Min(l) or Min(1l) or Min(l1l)) = -1

Max

Min

Max

Min

Max

Min

Nim Game Tree
|

|]]
] Hanil I ET RN EY

)b L] [l [a] [offalfa] [v]
]

We'll call the players Max and Min, with Max starting first

How to Use a Game Tree

Max wants to maximize his utility
Min wants to minimize Max’s utility

Max’s strategy must take into account what
Min does since they alternate moves

A move by Max or Min is called a ply

10

The Minimax Value of a Node

The minimax value of a node is the utility for
MAX of being in the corresponding state,
assuming that both players play optimally
from there to the end of the game

MINIMAX - VALUE(n) =

UTILITY(n) Ifnnis aterminal state
MINIMAX - VALUE(S) ifnis a MAX node

MINIMAX - VALUE(S) ifnis a MIN node

maXSESUCCESSOTS(n)
min

seSuccessors (n)

Minimax value maximizes worst-case outcome for MAX

Nim Game Tree

Max m
Min |] 1
Max m II “ II ﬂ ||

Min n n +1 n +1 +1 ’+1‘ ’+1‘ ’+1‘
Max [!
Min

12

Minimax Values in Nim Game Tree

Max m
Min i |]]
Max Iﬂ II II II II ||
Min]] L]] [l [1
Max +1[1]
Min

"

Minimax Values in Nim Game Tree

Max m
Min [|]]
Max m II II II II ||
Min Al ap] [ap]] [sa] Al v][sa][] [
Max +1[1]
Min

14

Minimax Values in Nim Game Tree

Max m
Min [|]]
Max +1/ 1| w1]] +1[0| +1[1] +1[1]
Min Al ap] [ap]) [sa] Al][+][] 1
Max +1[1]
Min
"

Minimax Values in Nim Game Tree
Max m
Min 1|]]
Max +1) 1| s] 1] +1[0| +1[1] +1[1]
Min Al ap] [ap]] [sa] Al v][sa][] [
Max +1
Min

16

Minimax Values in Nim Game Tree
+1

Max
vin «a[un]] Al
Max +1 | s+l 1]+ +1[1]
Min -l -1 +1 -1 +1 +1 -1| +1 | | +1 | | +1|
Max +1[!
Min
17
Minimax Values in Nim Game Tree
Minimax decision at the root:
Max taking this action results in the
successor with highest
minimax value
Min
Max
Min
Max

18

Another Example
A = Mlaximizing
player
MAX A = Minimizing
v player

MIN v ¢

19

Another Example

X /a\
MIN 3 2\© 2

10

Another Example

3 / \
MAX A
MIN 3 2\ C 2

3 12 8 2 4 6 14 5 2
21
The MINIMAX Algorithm
function MINIMAX-DECISION(state) returns an action
inputs: state, current state in game
v «— MAX-VALUE(state)
return the action in SUCCESSORS(state) with value v
function MAX-VALUE(state) returns a utility value
if TERMINAL-TEST (state) then return UTILITY (state)
V — - Infinity
for a, s in SUCCESSORS(state) do
v < MAX(v, MIN-VALUE(s))
return v
function MIN-VALUE(state) returns a utility value
if TERMINAL-TEST (state) then return UTILITY (state)
V «— Infinity
for a, s in SUCCESSORS(state) do
v < MIN(v, MAX-VALUE(s))
return v
22

11

The MINIMAX algorithm

Computes minimax decision from the current state
Depth-first exploration of the game tree

Time Complexity O(b™) where b=# of legal
moves, m=maximum depth of tree

Space Complexity:

— O(bm) if all successors generated at once

— O(m) if only one successor generated at a time (each
partially expanded node remembers which successor to
generate next)

23

Minimax With 3 Players

(1,26) 4,23 (6,1,2) (741 (5,11 (152 (7,71 (54,5

Now have a vector of utilities for players (A,B,C). All players maximize their
utilities. Note: In two-player, zero-sum games, we have a single value
because the values are always opposite.

12

Minimax With 3 Players

(1.2,6) (423) (6,12) (741 (511 (152 (7,71) (54,5)

25

Minimax With 3 Players

1,2,6) (4,23) (6,12) (741) (511) (1,52) (7,7,1) (545

26

13

Minimax With 3 Players

(1,26) 423 (612 (741 (511 (152 ((7,71) (54)5)

27

Subtleties With Multiplayer Games

» Alliances can be made and broken

» For example, if A and B are weaker than C,
they can gang up on C

 But A and B can turn on each other once C
IS weakened

 But society considers the player that breaks
the alliance to be dishonorable

28

14

Pruning

« Can we improve on the time complexity of

O(bm)?

* Yes if we prune away branches that cannot
possibly influence the final decision

29

Max

Min

Max

Min

Max

Min

+1
Al]
+1[1]

Pruning in Nim
+1

+1 -1 -1
safn] owai] s sy +1[1] [1]

w | al] [s] [«a] [][+][] [+1]

If we know that the only two outcomes are +1 and -1,
what branches do we not need to explore when
minimax backtracks?

15

Pruning in Nim
+1[i |

Max 7
\
Min sa[un]]~]
Max +1] 1| w1]] +1[0| +]1] +1[1]
Min -l -1 +1 -1 +1 +1 -1| +1 | | +1 | | +1 |
Max [l
Min If we know that the only two outcomes are +1 and -1,
what branches do we not need to explore when
minimax backtracks?
Pruning in Nim
Max +1
\
Min +a[un]) ”]
Max +1 +1 +1 +1 +1 +1
Min Al] i I NENEIE N ENE [1]
Max [l
. What happens if we have more than just two
Min outcomes?

32

16

Pruning Intuition (General Case)

MAX

h 5) -

33

Pruning Example

3 12 8 2 x y 14 5 2

MINIMAX-VALUE(root)

= max(min(3,12,8),min(2,x,y),min(14,5,2))

= max(3,min(2,x,y),2)

= max(3,z,2) where z < 2

- 3 34

17

Pruning Intuition

Remember that minimax search is DFS.

At any one time, we only have to consider the nodes along a single path in the

tree

In general, let:

* o = highest minimax value of all of the MAX player’s choices expanded on

current path

* B =lowest minimax value of all of the MIN player’s choices expanded on

current path
+ Ifata MIN player node, prune if minimax value of node < o
+ Ifata MAX player node, prune if minimax value of node > 3

35

ALPHA-BETA Pseudocode

function ALPHA-BETA-SEARCH(state) returns an action
inputs: state, current state in game
v — MAX-VALUE(state, -co, +0)
return the action in SUCCESSORS(state) with value v

function MAX-VALUE(state, o, B) returns a utility value
inputs: state, current state in game
o, the value of the best alternative for MAX along the path to state
B3, the value of the best alternative for MIN along the path to state

if TERMINAL-TEST (state) then return UTILITY (state)
V «— -0
for a, s in SUCCESSORS(state) do
Vv «— MAX(v, MIN-VALUE(, o, B))
if v> then returnv
o «— MAX(a, V)
returnv

36

18

ALPHA-BETA Pseudocode

function MIN-VALUE((state, o, B) returns a utility value

inputs: state, current state in game

a, the value of the best alternative for MAX along the path to state

B, the value of the best alternative for MIN along the path to state
if TERMINAL-TEST (state) then return UTILITY (state)
V «— +o0
for a, s in SUCCESSORS(state) do

Vv — MIN(V, MAX-VALUE(S, o, B))

if v<a then returnv

B < MIN(B, V)
return v

37

[llustrating the Pseudocode

* In the example to follow, the notation
(-o0, +00) represents the (o, B) values for the
corresponding node

 This example is intended to illustrate how the
actual implementation of Alpha-Beta pruning

works
A :n;lzﬁg:izing (o0, +20) A
VT

38

19

Alpha-Beta Pruning Example

a)

(-oo, +°0)

(=, +) /p\

e)

9)

Pruning happens: 2 < o (a=3)

20

Alpha-Beta Pruning Example

Pruning happens: 2 < o (a=3) but not much
is pruned since we’re at the bottom

Effectiveness of Alpha-Beta

 Depends on order of successors

 Best case: Alpha-Beta reduces complexity
from O(b™) for minimax to O(b™?)

 This means Alpha-Beta can lookahead
about twice as far as minimax in the same
amount of time

42

21

Implementation Details

In games we have the problem of
transposition

Transposition means different permutations
of the move sequence that end up in the
same position

Results in lots of repeated states

Use a transposition table to remember the
states you’ve seen (similar to closed list)

43

What you should know

Be able to draw up a game tree

Know how the Minimax algorithm works
Know how the Alpha-Beta algorithm works
Be able to do both algorithms by hand

44

22

