
1

1

CS 331: Artificial Intelligence

Adversarial Search II

2

Outline

1. Evaluation Functions

2. State-of-the-art game playing programs

3. 2 player zero-sum finite stochastic games

of perfect information

2

3

Evaluation Functions

4

Evaluation Functions

• Minimax and Alpha-Beta require us to search all

the way to the terminal states

• What if we can’t do this in a reasonable amount of

time?

• Cut off search earlier and apply a heuristic

evaluation function to states in the search

• Effectively turns non-terminal nodes into terminal

leaves

3

5

Evaluation Functions

• If at terminal state after cutting off search, return
actual utility

• If at non-terminal state after cutting off search,
return an estimate of the expected utility of the
game from that state

T

Cutoff

6

Example: Evaluation Function for

Tic-Tac-Toe

X O O

X

X

Eval=+100

(for win)

O X

X

O

Eval=2

X’s move

O X X

O X

O

Eval=-100

(for loss)

X O

O

X

X’s move

X is the maximizing player

Eval=1

4

7

Properties of Good Evaluation

Functions

1. Orders the terminal states in the same way as the
utility function

2. Computation can’t take too long

3. Evaluation function should be strongly
correlated with the actual chances of winning

Exact values don’t matter. It’s the ordering of terminal

states that matters. In fact, behavior is preserved

under any monotonic transformation of the evaluation

function

8

Properties of Good Evaluation

Functions

1. Orders the terminal states in the same way as the
utility function

2. Computation can’t take too long

3. Evaluation function should be strongly
correlated with the actual chances of winning

Even in a deterministic game like chess, the evaluation function

introduces uncertainty because of the lack of computational resources

(can’t see all the way to the terminal state so you have to make a guess

as to how good your state is).

5

9

Coming up with Evaluation

Functions

• Extract features from the game

• For example, what features from a game of

chess indicate that a state will likely lead to

a win?





n

i

iinn sfwsfwsfwsfws
1

2211)()()()()EVAL(

Coming up with Evaluation

Functions

Weighted linear function:

wi’s are

weights
fi’s are features of the

game state (e.g. # of

pawns in chess)

The weights and features are ways of encoding human

knowledge of game strategies into the adversarial search

algorithm

6

11

Coming up with Evaluation

Functions?

• Suppose we use the weighted linear

evaluation function for chess. What are

two problems with it?

1. Assumes features are independent

2. Need to know if you’re at the beginning,

middle, or end of the game

12

Alpha-Beta with Eval Functions

Replace:

if TERMINAL-TEST(state) then return UTILITY(state)

With

if CUTOFF-TEST(state,depth) then return EVAL(state)

Also, need to pass depth parameter along and need to

increment depth parameter with each recursive call.

7

13

The depth parameter

• CUTOFF-TEST(state,depth) returns:

– True for all terminal states

– True for all depth greater than some fixed depth

limit d

• How to pick d?

– Pick d so that agent can decide on move within

some time limit

14

Quiescence Search

• Suppose the board at the

left is at the depth limit

• Black ahead by 2 pawns

and a knight

• Heuristic function says

Black is doing well

• But it can’t see one more

move ahead when White

takes Black’s queen

8

15

Quiescence Search

• Evaluation function should only be applied

to quiescent positions

• i.e. positions that don’t exhibit wild swings

in value in the near future

• Quiescence search: nonquiescent positions

can be expanded further until quiescent

positions are reached

16

Horizon Effect

• Stalling moves push an unavoidable and

damaging move by the opponent “over the

search horizon” to a place where it cannot

be detected

• Agent believes it has avoided the damaging,

inevitable move with these stalling moves

9

17

Horizon Effect Example

18

Singular Extensions

• Can be used to avoid horizon effect

• Expand only 1 move that is clearly better than all

other moves

• Goes beyond normal depth limit because

branching factor is 1

• In chess example, if Black’s checking moves and

White’s king moves are clearly better than the

alternatives, then singular extension will expand

search until it picks up the queening

10

19

Another Optimization: Forward

Pruning

• Prune moves at a given node immediately

• Dangerous! Might prune away the best

move

• Best used in special situations e.g.

symmetric or equivalent moves

20

Chess

• Branching factor: 35 on average

• Minimax lookahead about 5 ply

• Humans lookahead about 6-8 plies

• Alpha-Beta lookahead about 10 plies

(roughly expert level of play)

If you do all the optimizations

discussed so far

11

21

State-of-the-art Game Playing

Programs

22

State of the Art Game Programs

• Checkers (Samuel, Chinook)

• Othello (Logistello)

• Backgammon (Tesauro’s TD-gammon)

• Go (AlphaGo – guest lecture Friday!)

• Bridge (Bridge Baron, GIB)

• Chess

12

23

Chess

• Deep Blue – Campbell, Hsu, Hoane

• 1997 – Deep Blue defeats Garry Kasparov

in a 6 game exhibition match

24

Chess

• Deep Blue Hardware:

– Parallel computer with 30 IBM RS/6000

processors running the software search

– 480 custom VLSI chess processors that

performed:

• Move generation (and move ordering)

• Hardware search for the last few levels of the tree

• Evaluation of leaf nodes

13

25

Chess

• Algorithm:
– Iterative-deepening alpha-beta search with a

transposition table

– Key to success: generating extensions beyond the depth
limit for sufficiently interesting lines of forcing/forced
moves

– Reaches depth 14 routinely, depth 40 in some cases

– Evaluation function:
• Had over 8000 features

• Used an opening of about 4000 positions

• Database of 700,000 grandmaster games

• Large endgame database of solved positions (all positions with
5 pieces, many with 6 pieces remaining)

26

Chess

• So was it the hardware or software that

made the difference?

– Campbell et al. say search extensions and

evaluation function were critical

– But recent algorithmic improvements allow

programs running on standard PCs to beat

opponents running on massively parallel

machines

14

27

2 player zero-sum finite stochastic

games of perfect information

28

But First…A Mini-Tutorial on

Expected Values

What is probability?

– The relative frequency with which an outcome

would be obtained if the process were repeated

a large number of times under similar

conditions

Example: Probability of rolling a 1 on a fair

dice is 1/6

15

29

Expected Values

• Suppose you have an event that can take a

finite number of outcomes

– E.g. Rolling a dice, you can get either 1, 2, 3, 4,

5, 6

• Expected value: What is the average value

you should get if you roll a fair dice?

30

Expected Values

What if your dice isn’t fair? Suppose your

probabilities are:

Value Prob

1 0

2 0

3 0

4 0

5 0

6 1

Value Prob

1 0.5

2 0

3 0

4 0

5 0

6 0.5

Value Prob

1 0.1

2 0.1

3 0.2

4 0.2

5 0.3

6 0.1

OR OR

16

31

Expected Values

The expected value is a weighted average of the
probability of an outcome times the value of that
outcome

 ome)value(outc*me)Prob(outco

Value Prob

1 0.1

2 0.1

3 0.2

4 0.2

5 0.3

6 0.1

Expected Value

= (0.1)(1)+(0.1)(2)+(0.2)(3)+(0.2)(4)+(0.3)(5)+(0.1)(6)

= 0.1 + 0.2 + 0.6 + 0.8 + 1.5 + 0.6

= 3.8

32

2 player zero-sum finite stochastic

games of perfect information

A

B

Chance

Chance

p=0.1

-50

p=0.9

+10-2

-12+10

p=0.5p=0.5

• Need to calculate expected value for

chance nodes

• Calculate expectiminimax value instead of

minimax value

MAX

MIN

17

33

2 player zero-sum finite stochastic

games of perfect information

A

B

Chance

Chance

p=0.1

-50

p=0.9

+10-2

-12+10

p=0.5p=0.5

(0.5)(10)+(0.5)(-12)=

-1

MAX

MIN

34

2 player zero-sum finite stochastic

games of perfect information

A

B

Chance

Chance

p=0.1

-50

p=0.9

+10-2

-12+10

p=0.5p=0.5

(0.1)(-50)+(0.9)(10)=4

(0.5)(10)+(0.5)(-12)=

-1

-2

MAX

MIN

18

35

2 player zero-sum finite stochastic

games of perfect information

A

B

Chance

Chance

p=0.1

-50

p=0.9

+10-2

-12+10

p=0.5p=0.5

(0.1)(-50)+(0.9)(10)=4

(0.5)(10)+(0.5)(-12)=

-1

-2

4
MAX

MIN

36

Expectiminimax

)IMAX(EXPECTIMIN n

)UTILITY(n

)IMAX(EXPECTIMINmax)(Successorss sn

)IMAX(EXPECTIMINmin)(Successorss sn





(n)Successorss

)IMAX(EXPECTIMIN)(ssP

If n is a MAX node

If n is a terminal state

If n is a chance node

If n is a MIN node

19

37

Complexity of Expectiminimax

• Minimax – O(bm)

• Expectiminimax – O(bmnm)

n = # of possibilities at a chance node (assuming all chance

nodes have the same number of possibilities)

Expectiminimax is computationally expensive so

you can’t look ahead too far! The uncertainty due

to randomness accounts for the expense.

Expectiminimax Example

38

20

39

What you should know

• What evaluation functions are

• Problems with them like quiescence,

horizon effect

• How to calculate the expectiminimax value

of a node

