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CS 331: Artificial Intelligence

Adversarial Search II
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Outline

1. Evaluation Functions

2. State-of-the-art game playing programs

3. 2 player zero-sum finite stochastic games 

of perfect information
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Evaluation Functions
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Evaluation Functions

• Minimax and Alpha-Beta require us to search all 

the way to the terminal states

• What if we can’t do this in a reasonable amount of 

time?

• Cut off search earlier and apply a heuristic 

evaluation function to states in the search

• Effectively turns non-terminal nodes into terminal 

leaves
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Evaluation Functions

• If at terminal state after cutting off search, return 
actual utility

• If at non-terminal state after cutting off search, 
return an estimate of the expected utility of the 
game from that state

T

Cutoff
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Example: Evaluation Function for 

Tic-Tac-Toe
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X

X

Eval=+100 

(for win)

O X

X

O

Eval=2

X’s move

O X X

O X

O

Eval=-100 

(for loss)

X O

O

X

X’s move

X is the maximizing player

Eval=1
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Properties of Good Evaluation 

Functions

1. Orders the terminal states in the same way as the 
utility function

2. Computation can’t take too long

3. Evaluation function should be strongly 
correlated with the actual chances of winning

Exact values don’t matter. It’s the ordering of terminal 

states that matters.  In fact, behavior is preserved 

under any monotonic transformation of the evaluation 

function
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Properties of Good Evaluation 

Functions

1. Orders the terminal states in the same way as the 
utility function

2. Computation can’t take too long

3. Evaluation function should be strongly 
correlated with the actual chances of winning

Even in a deterministic game like chess, the evaluation function 

introduces uncertainty because of the lack of computational resources 

(can’t see all the way to the terminal state so you have to make a guess 

as to how good your state is).
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Coming up with Evaluation 

Functions

• Extract features from the game

• For example, what features from a game of 

chess indicate that a state will likely lead to 

a win?
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Coming up with Evaluation 

Functions

Weighted linear function:

wi’s are 

weights 
fi’s are features of the 

game state (e.g. # of 

pawns in chess)

The weights and features are ways of encoding human 

knowledge of game strategies into the adversarial search 

algorithm
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Coming up with Evaluation 

Functions?

• Suppose we use the weighted linear 

evaluation function for chess.  What are 

two problems with it?

1. Assumes features are independent

2. Need to know if you’re at the beginning, 

middle, or end of the game
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Alpha-Beta with Eval Functions

Replace:

if TERMINAL-TEST(state) then return UTILITY(state)

With

if CUTOFF-TEST(state,depth) then return EVAL(state)

Also, need to pass depth parameter along and need to 

increment depth parameter with each recursive call.
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The depth parameter

• CUTOFF-TEST(state,depth) returns:

– True for all terminal states

– True for all depth greater than some fixed depth 

limit d

• How to pick d?

– Pick d so that agent can decide on move within 

some time limit
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Quiescence Search

• Suppose the board at the 

left is at the depth limit 

• Black ahead by 2 pawns 

and a knight

• Heuristic function says 

Black is doing well

• But it can’t see one more 

move ahead when White 

takes Black’s queen
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Quiescence Search

• Evaluation function should only be applied 

to quiescent positions

• i.e. positions that don’t exhibit wild swings 

in value in the near future

• Quiescence search: nonquiescent positions 

can be expanded further until quiescent 

positions are reached
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Horizon Effect

• Stalling moves push an unavoidable and 

damaging move by the opponent “over the 

search horizon” to a place where it cannot 

be detected

• Agent believes it has avoided the damaging, 

inevitable move with these stalling moves
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Horizon Effect Example
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Singular Extensions

• Can be used to avoid horizon effect

• Expand only 1 move that is clearly better than all 

other moves

• Goes beyond normal depth limit because 

branching factor is 1

• In chess example, if Black’s checking moves and 

White’s king moves are clearly better than the 

alternatives, then singular extension will expand 

search until it picks up the queening
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Another Optimization: Forward 

Pruning

• Prune moves at a given node immediately

• Dangerous! Might prune away the best 

move 

• Best used in special situations e.g. 

symmetric or equivalent moves
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Chess

• Branching factor: 35 on average

• Minimax lookahead about 5 ply

• Humans lookahead about 6-8 plies

• Alpha-Beta lookahead about 10 plies  

(roughly expert level of play)

If you do all the optimizations 

discussed so far
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State-of-the-art Game Playing 

Programs
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State of the Art Game Programs

• Checkers (Samuel, Chinook)

• Othello (Logistello)

• Backgammon (Tesauro’s TD-gammon)

• Go (AlphaGo – guest lecture Friday!)

• Bridge (Bridge Baron, GIB)

• Chess
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Chess

• Deep Blue – Campbell, Hsu, Hoane

• 1997 – Deep Blue defeats Garry Kasparov 

in a 6 game exhibition match
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Chess

• Deep Blue Hardware:

– Parallel computer with 30 IBM RS/6000 

processors running the software search

– 480 custom VLSI chess processors that 

performed:

• Move generation (and move ordering)

• Hardware search for the last few levels of the tree

• Evaluation of leaf nodes
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Chess

• Algorithm:
– Iterative-deepening alpha-beta search with a 

transposition table

– Key to success: generating extensions beyond the depth 
limit for sufficiently interesting lines of forcing/forced 
moves

– Reaches depth 14 routinely, depth 40 in some cases

– Evaluation function:
• Had over 8000 features

• Used an opening of about 4000 positions

• Database of 700,000 grandmaster games 

• Large endgame database of solved positions (all positions with 
5 pieces, many with 6 pieces remaining)
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Chess

• So was it the hardware or software that 

made the difference?

– Campbell et al. say search extensions and 

evaluation function were critical

– But recent algorithmic improvements allow 

programs running on standard PCs to beat 

opponents running on massively parallel 

machines
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2 player zero-sum finite stochastic 

games of perfect information
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But First…A Mini-Tutorial on 

Expected Values

What is probability?

– The relative frequency with which an outcome 

would be obtained if the process were repeated 

a large number of times under similar 

conditions

Example: Probability of rolling a 1 on a fair 

dice is 1/6
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Expected Values

• Suppose you have an event that can take a 

finite number of outcomes

– E.g. Rolling a dice, you can get either 1, 2, 3, 4, 

5, 6

• Expected value: What is the average value 

you should get if you roll a fair dice? 
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Expected Values

What if your dice isn’t fair? Suppose your 

probabilities are:

Value Prob

1 0

2 0

3 0

4 0

5 0

6 1

Value Prob

1 0.5

2 0

3 0

4 0

5 0

6 0.5

Value Prob

1 0.1

2 0.1

3 0.2

4 0.2

5 0.3

6 0.1

OR OR
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Expected Values

The expected value is a weighted average of the 
probability of an outcome times the value of that 
outcome

 ome)value(outc*me)Prob(outco

Value Prob

1 0.1

2 0.1

3 0.2

4 0.2

5 0.3

6 0.1

Expected Value 

= (0.1)(1)+(0.1)(2)+(0.2)(3)+(0.2)(4)+(0.3)(5)+(0.1)(6)

= 0.1 + 0.2 + 0.6 + 0.8 + 1.5 + 0.6

= 3.8
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2 player zero-sum finite stochastic 

games of perfect information

A

B

Chance

Chance

p=0.1

-50

p=0.9

+10-2

-12+10

p=0.5p=0.5

• Need to calculate expected value for 

chance nodes

• Calculate expectiminimax value instead of 

minimax value 

MAX

MIN
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2 player zero-sum finite stochastic 

games of perfect information

A

B

Chance

Chance

p=0.1

-50

p=0.9

+10-2

-12+10

p=0.5p=0.5

(0.5)(10)+(0.5)(-12)= 

-1

MAX

MIN
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2 player zero-sum finite stochastic 

games of perfect information

A

B

Chance

Chance

p=0.1

-50

p=0.9

+10-2

-12+10

p=0.5p=0.5

(0.1)(-50)+(0.9)(10)=4

(0.5)(10)+(0.5)(-12)= 

-1

-2

MAX

MIN



18

35

2 player zero-sum finite stochastic 

games of perfect information

A

B

Chance

Chance

p=0.1

-50

p=0.9

+10-2

-12+10

p=0.5p=0.5

(0.1)(-50)+(0.9)(10)=4

(0.5)(10)+(0.5)(-12)= 

-1

-2

4
MAX

MIN
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Expectiminimax

)IMAX(EXPECTIMIN n

)UTILITY(n

)IMAX(EXPECTIMINmax )(Successorss sn

)IMAX(EXPECTIMINmin )(Successorss sn





(n)Successorss

)IMAX(EXPECTIMIN)( ssP

If n is a MAX node

If n is a terminal state

If n is a chance node

If n is a MIN node
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Complexity of Expectiminimax

• Minimax – O(bm)

• Expectiminimax – O(bmnm)

n = # of possibilities at a chance node (assuming all chance 

nodes have the same number of possibilities)

Expectiminimax is computationally expensive so 

you can’t look ahead too far!  The uncertainty due 

to randomness accounts for the expense.

Expectiminimax Example

38
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What you should know

• What evaluation functions are

• Problems with them like quiescence, 

horizon effect

• How to calculate the expectiminimax value 

of a node


