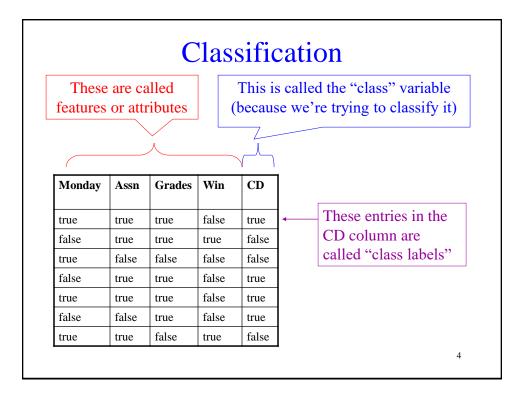


Classification

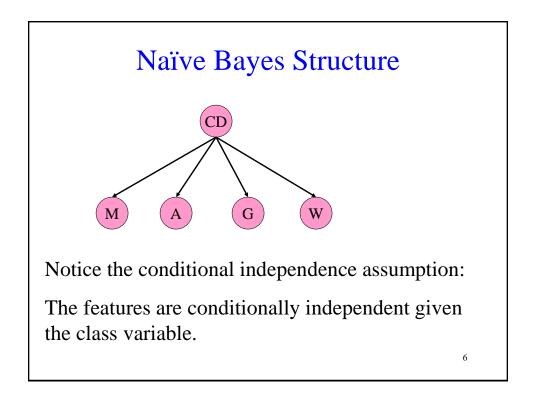
Suppose you are trying to classify situations that determine whether or not Canvas will be down. You've come up with the following list of variables (which are all Boolean):

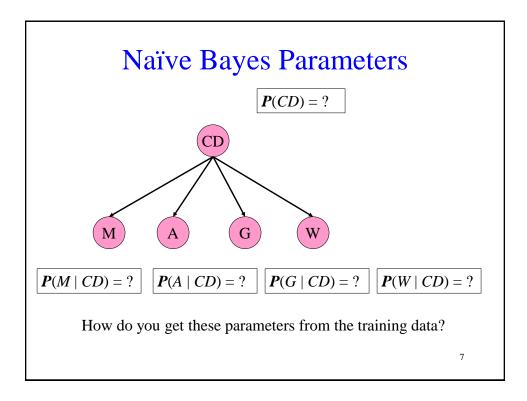
Monday	Is a Monday
Assn	CS331 assignment due
Grades	CS331 instructor needs to enter grades
Win	The Beavers won the football game

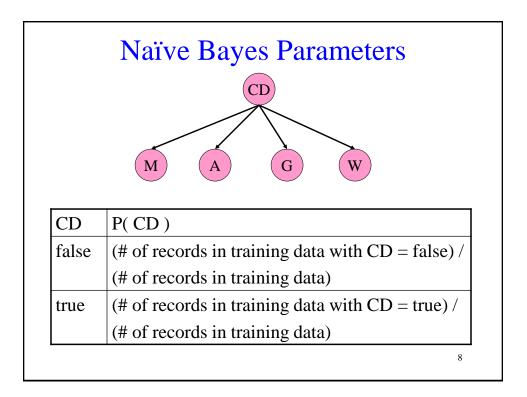
We also have a Boolean variable called CD which stands for "Canvas down"

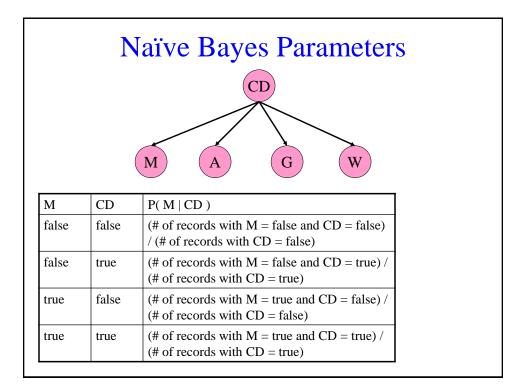


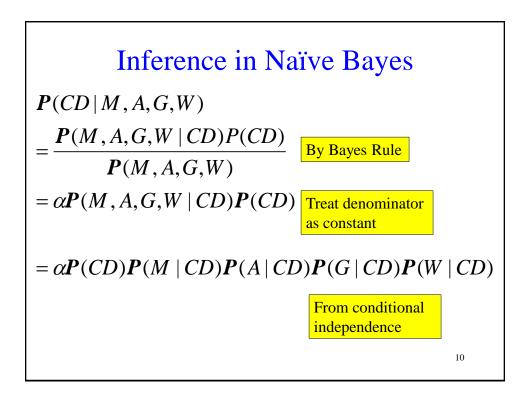
Monday	Assn	Grades	Win	CD		You create a dataset out of
true	true	true	false	true	/	your past experience. This
false	true	true	true	false		is called "training data".
true	false	false	false	false		
false	true	false	false	true		
true	true	true	false	true		
false	false	true	false	true		
true	true	false	true	false		
						You now have 2 new ituations and you would like
Monday	Assn	Grades	Win			o predict if Canvas will go
true	true	true	true		Ċ	lown. This is called "test
false	true	true	false		Ċ	lata".

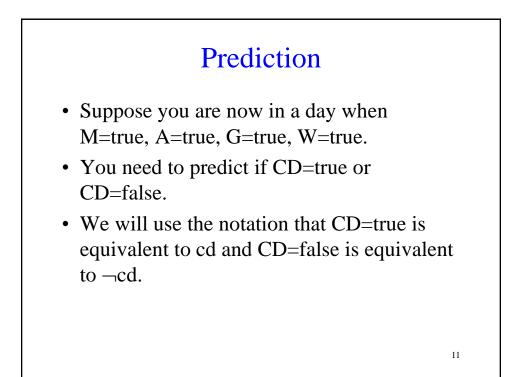


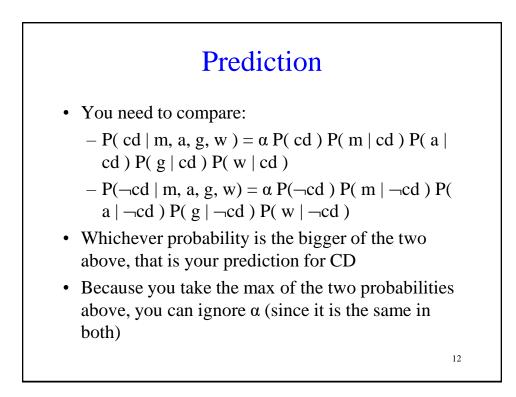


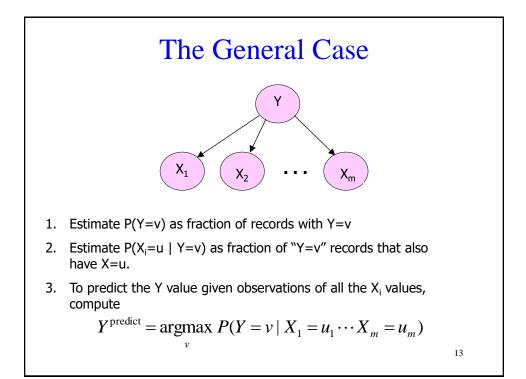


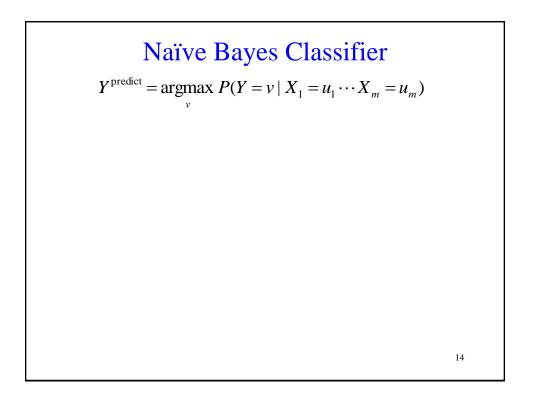


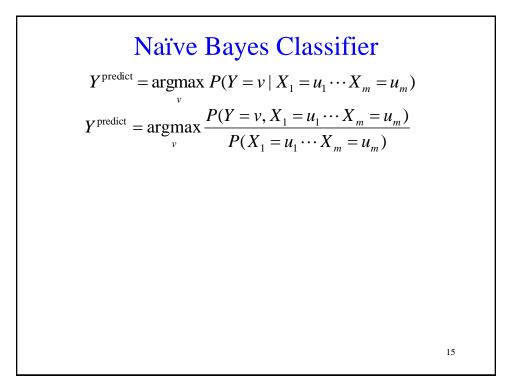






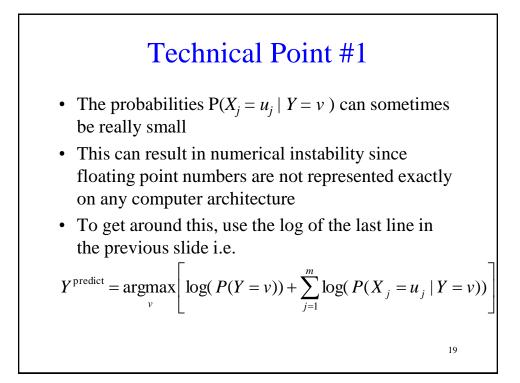


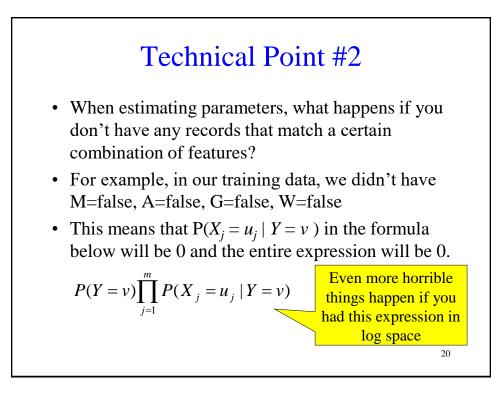




$$\begin{aligned} & \text{Particle} \text{ Bayes Classifier} \\ & \text{P}^{\text{predict}} = \underset{v}{\operatorname{argmax}} P(Y = v \mid X_1 = u_1 \cdots X_m = u_m) \\ & \text{P}^{\text{predict}} = \underset{v}{\operatorname{argmax}} \frac{P(Y = v, X_1 = u_1 \cdots X_m = u_m)}{P(X_1 = u_1 \cdots X_m = u_m)} \\ & \text{P}^{\text{predict}} = \underset{v}{\operatorname{argmax}} \frac{P(X_1 = u_1 \cdots X_m = u_m \mid Y = v) P(Y = v)}{P(X_1 = u_1 \cdots X_m = u_m)} \end{aligned}$$

$$\begin{aligned} \text{Discrete} & \text{Bases of the structure of } \\ \mathcal{P}^{\text{predict}} = \sup_{v} \mathcal{P}(\mathcal{P} = v \mid \mathcal{X}_{1} = u_{1} \cdots \mathcal{X}_{m} = u_{m}) \\ \mathcal{P}^{\text{predict}} = \sup_{v} \frac{\mathcal{P}(\mathcal{Y} = v, \mathcal{X}_{1} = u_{1} \cdots \mathcal{X}_{m} = u_{m})}{\mathcal{P}(\mathcal{X}_{1} = u_{1} \cdots \mathcal{X}_{m} = u_{m})} \\ \mathcal{P}^{\text{predict}} = \sup_{v} \frac{\mathcal{P}(\mathcal{X}_{1} = u_{1} \cdots \mathcal{X}_{m} = u_{m} \mid \mathcal{Y} = v) \mathcal{P}(\mathcal{Y} = v)}{\mathcal{P}(\mathcal{X}_{1} = u_{1} \cdots \mathcal{X}_{m} = u_{m})} \\ \mathcal{P}^{\text{predict}} = \sup_{v} \mathcal{P}(\mathcal{P}(\mathcal{X}_{1} = u_{1} \cdots \mathcal{X}_{m} = u_{m} \mid \mathcal{Y} = v) \mathcal{P}(\mathcal{Y} = v) \\ \mathcal{P}^{\text{predict}} = \sup_{v} \mathcal{P}(\mathcal{P}(\mathcal{P} = v)) \\ \mathcal{P}^{\text{predict}} = u_{1} \\ \mathcal{P}(\mathcal{P}(\mathcal{P} = v) \\ \mathcal{P}(\mathcal{P}(\mathcal{P} = v)) \\ \mathcal{P}^{\text{predict}} = u_{1} \\ \mathcal{P}(\mathcal{P}(\mathcal{P} = v)) \\ \mathcal{P}^{\text{pr$$





Uniform Dirichlet Priors

Let N_i be the number of values that X_i can take on.

$$P(X_j = u_j | Y = v) = \frac{(\text{#records with } X_j = u_j \text{ and } Y = v) + 1}{(\text{#records with } Y = v) + N_j}$$

What happens when you have no records with Y = v?

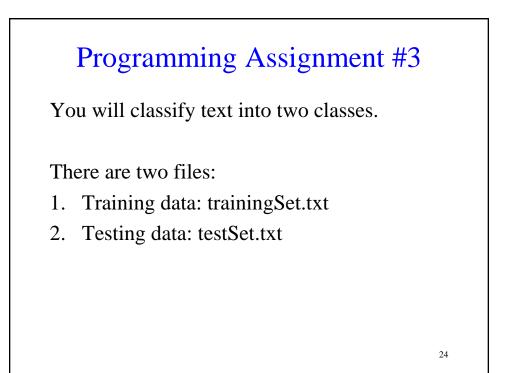
$$P(X_j = u_j \mid Y = v) = \frac{1}{N_j}$$

This means that each value of X_j is equally likely in the absence of data. If you have a lot of data, it dominates the $1/N_j$ value. We call this trick a "uniform Dirichlet prior".

21

Monday	Assn	Grades	Win	CD
true	true	true	false	true
false	true	true	true	false
true	false	false	false	false
false	true	false	false	true
true	true	true	false	true
false	false	true	false	true
true	true	false	true	false

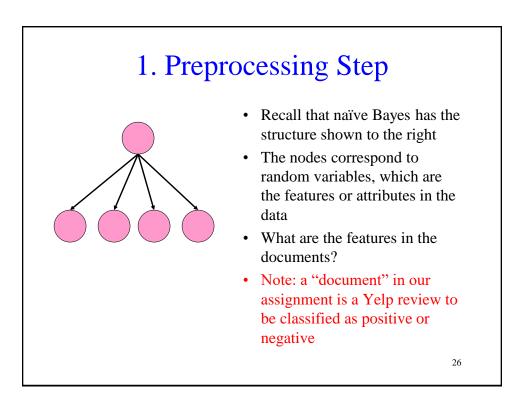
Monday	Assn	Grades	Win	CD
true	true	true	false	true
false	true	true	true	false
true	false	false	false	false
false	true	false	false	true
true	true	true	false	true
false	false	true	false	true
true	true	false	true	false

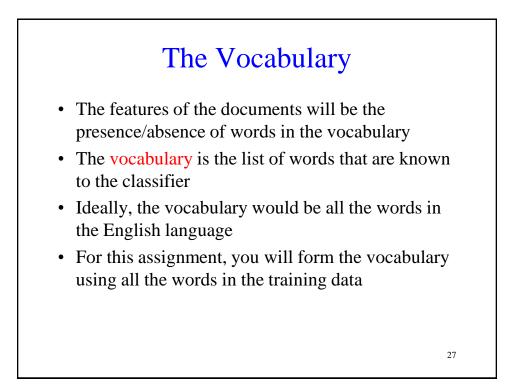


Programming Assignment #3

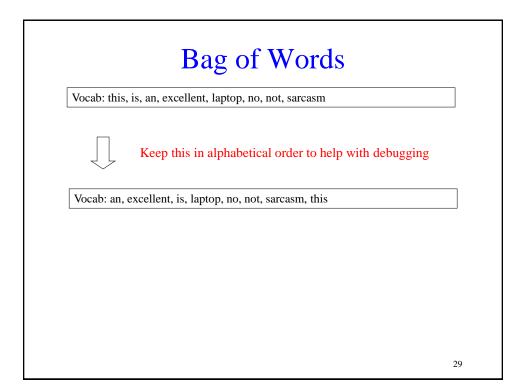
Two parts to this assignment:

- 1. Pre-processing step
- 2. Classification step

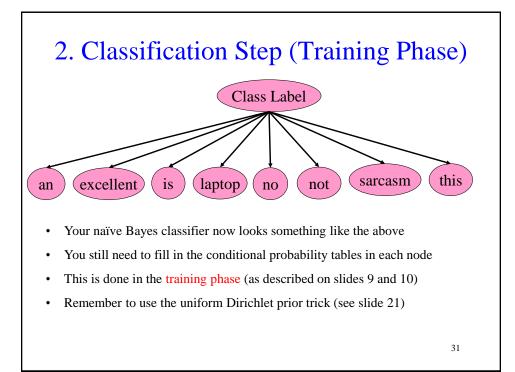


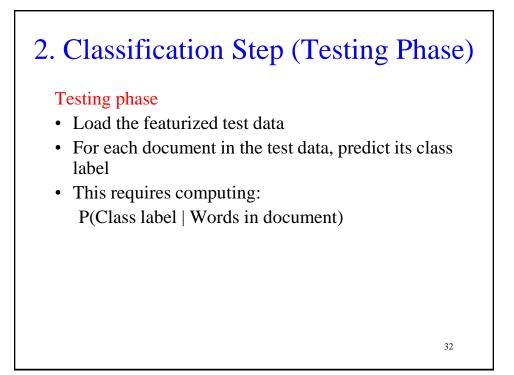


Bag of W Suppose you have the following doc	
Training Data	Class Label
This is an excellent laptop	Class 1
No, this is not sarcasm!	Class 0
<u>Test Data</u> Excellent Laptop =P	Class 1
The vocabulary will be: this, is, an, excellent, laptop, no, not,	You will ignore punctuation for this assignment sarcasm



Ne	xt, conve	rt y	our tra	inin	g an	d test da	ata int	o features
<u>Trai</u>	ning Data							
an	excellent	is	laptop	no	not	sarcasm	this	Class Label
1	1	1	1	0	0	0	1	0
0	0	1	0	1	1	1	1	1
Test	Data							
an	excellent	is	laptop	no	not	sarcasm	this	Class Label
					0	0	0	1





2. Classification Step (Testing Phase)

Suppose you have the following test instance:

an	excellent	is	laptop	no	not	sarcasm	this	Class Label
0	1	0	1	0	0	0	0	(to be predicted)

 $\begin{array}{l} P(Class = 1 \mid an = 0, excellent = 1, is = 0, laptop = 1, no = 0, not \\ = 0, sarcasm = 0, this = 0) \\ = \alpha P(Class = 1) * P(an = 0 | Class = 1) * P(excellent = 1 | Class = 1) * \\ P(is = 0 | Class = 1) * P(laptop = 1 | Class = 1) * P(not = 0 | Class = 1) * \\ P(not = 0 | Class = 1) * P(sarcasm = 0 | Class = 1) * \\ P(this = 0 | Class = 1) \end{array}$

Note: Use P(Word = 1 | Class) if you have a 1 for the word. Otherwise use P(Word = 0 | Class)

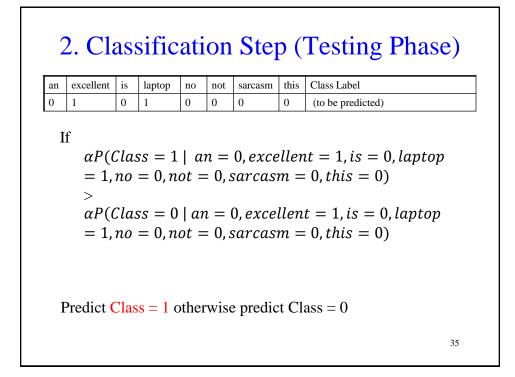
2. Classification Step (Testing Phase)

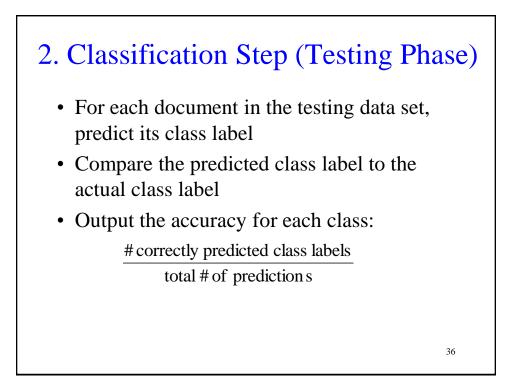
an	excellent	is	laptop	no	not	sarcasm	this	Class Label
0	1	0	1	0	0	0	0	(to be predicted)

Then compute the following:

$$\begin{split} P(Class = 0 \mid an = 0, excellent = 1, is = 0, laptop = 1, no = 0, not \\ = 0, sarcasm = 0, this = 0) \\ = \alpha P(Class = 0) * P(an = 0 | Class = 0) * P(excellent = 1 | Class = 0) * \\ P(is = 0 | Class = 0) * P(laptop = 1 | Class = 0) * P(no=0 | Class = 0) * \\ P(not = 0 | Class = 0) * P(sarcasm = 0 | Class = 0) * \\ P(this = 0 | Class = 0) \end{split}$$

34





Results

There are two sets of results we require:

- 1. Results #1:
 - Use trainingSet.txt for the training phase
 - Use trainingSet.txt for the testing phase
 - Report accuracy
- 2. Results #2:
 - Use trainingSet.txt for the training phase
 - Use testSet.txt for the testing phase
 - Report accuracy

What You Should Know

- How to learn the parameters for a Naïve Bayes model
- How to make predictions with a Naïve Bayes model
- How to implement a Naïve Bayes Model