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CS 331: Artificial Intelligence

Probability I

Thanks to Andrew Moore for some course material
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Dealing with Uncertainty

• We want to get to the point where we can 

reason with uncertainty

• This will require using probability e.g. 

probability that it will rain today is 0.99

• We will review the fundamentals of 

probability

Outline

1. Random variables

2. Probability
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Random Variables

• The basic element of probability is the 
random variable

• Think of the random variable as an event 
with some degree of uncertainty as to 
whether that event occurs

• Random variables have a domain of values 
it can take on
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Random Variables

Example:

• ProfLate is a random variable for whether 
your prof will be late to class or not

• The domain of ProfLate is {true, false}

– ProfLate = true: proposition that prof 
will be late to class

– ProfLate = false: proposition that prof 
will not be late to class
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Random Variables

Example:

• ProfLate is a random variable for whether 
your prof will be late to class or not

• The domain of ProfLate is <true, false>

– ProfLate = true: proposition that prof 
will be late to class

– ProfLate = false: proposition that prof 
will not be late to class

You can assign some degree of 

belief to this proposition e.g.

P(ProfLate = true) = 0.9
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Random Variables

Example:

• ProfLate is a random variable for whether 
your prof will be late to class or not

• The domain of ProfLate is <true, false>

– ProfLate = true: proposition that prof 
will be late to class

– ProfLate = false: proposition that prof 
will not be late to class

And to this one e.g. 

P(ProfLate = false) = 0.1
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Random Variables

• We will refer to random variables with 
capitalized names e.g. X, Y, ProfLate

• We will refer to names of values with lower 
case names e.g. x, y, proflate

• This means you may see a statement like 
ProfLate = proflate
– This means the random variable ProfLate takes 

the value proflate (which can be true or false)

• Shorthand notation:

ProfLate = true is the same as proflate and 
ProfLate = false is the same as ¬proflate

Random Variables

3 types of random variables:

1. Boolean random variables

2. Discrete random variables

3. Continuous random variables
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Boolean Random Variables

• Take the values true or false

• E.g. Let A be a Boolean random variable

– P(A = false) = 0.9

– P(A = true) = 0.1

Discrete Random Variables

Allowed to taken on a finite number of values 

e.g. 

• P(DrinkSize=small) = 0.1

• P(DrinkSize=medium) = 0.2

• P(DrinkSize=large) = 0.7

Discrete Random Variables

Values of the domain must be:

• Mutually Exclusive i.e. P( A = vi AND A = vj ) = 0 

if i  j

This means, for instance, that you can’t have a 

drink that is both small and medium

• Exhaustive i.e. P(A = v1 OR A = v2 OR ... OR A = 

vk) = 1

This means that a drink can only be either small, 

medium or large. There isn’t an extra large.
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Discrete Random Variables

Values of the domain must be:

• Mutually Exclusive i.e. P( A = vi AND A = vj ) = 0 

if i  j

This means, for instance, that you can’t have a 

drink that is both Small and Medium

• Exhaustive i.e. P(A = v1 OR A = v2 OR ... OR A = 

vk) = 1

This means that a drink can only be either small, 

medium or large. There isn’t an extra large

The AND here means intersection 

i.e. (A = vi )  (A = vj) 

The OR here means union i.e. (A = v1 ) 

(A = v2)  ...  (A = vk)
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Discrete Random Variables

• Since we now have multi-valued discrete 

random variables we can’t write P(a) or 

P(¬a) anymore

• We have to write P(A = vi) where vi = a 

value in {v1, v2, …, vk} 
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Continuous Random Variables

• Can take values from the real numbers

• E.g. They can take values from [0, 1]

• Note: We will primarily be dealing with 

discrete random variables

• (The next slide is just to provide a little bit 

of information about continuous random 

variables)

Probability Density Functions

Discrete random variables have probability distributions:

a ¬a

P
(A

)

1.0

Continuous random variables have probability density 

functions e.g:

P
(X

)

X

P
(X

)
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Probabilities

• We will write P(A=true) as “the fraction of 

possible worlds in which A is true”

• We can debate the philosophical 

implications of this for the next 4 hours

• But we won’t
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Probabilities

• We will sometimes talk about the 
probabilities of all possible values of a 
random variable

• Instead of writing

– P(A=false) = 0.25

– P(A=true) = 0.75

• We will write P(A) = (0.25, 0.75)

Note the boldface!
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Visualizing A

Event space of 

all possible 
worlds

Its area is 1
Worlds in which A is false

Worlds in which 
A is true

P(a) = Area of

reddish oval
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The Axioms of Probability

• 0  P(a)  1

• P(true) = 1

• P(false) = 0

• P(a OR b) = P(a) + P(b) - P(a AND b)

These axioms are often called Kolmogorov’s axioms in 

honor of the Russian mathematician Andrei Kolmogorov

The logical OR is equivalent to set 

union . 
The logical AND is equivalent to 

set intersection (). Sometimes, 

I’ll write it as P(a, b)
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Interpreting the axioms

• 0  P(a)  = 1

• P(true) = 1

• P(false) = 0

• P(a OR b) = P(a) + P(b) - P(a, b)

The area of P(a) can’t 

get any smaller than 0

And a zero area would 

mean that there is no 
world in which a is not 

false
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Interpreting the axioms

• 0  P(a)  1

• P(true) = 1

• P(false) = 0

• P(a OR b) = P(a) + P(b) - P(a, b)

The area of P(a) can’t 

get any bigger than 1

And an area of 1 would 

mean all worlds will have 
a is true
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Interpreting the axioms

• 0  P(a)  1

• P(true) = 1

• P(false) = 0

• P(a OR b) = P(a) + P(b) - P(a, b)

a b

P(a, b) [The purple area]

P(a OR b) [the area of both circles] 24

Prior Probability

• We can consider P(A) as the unconditional 

or prior probability 

– E.g. P(ProfLate = true) = 1.0

• It is the probability of event A in the 

absence of any other information 

• If we get new information that affects A, we 

can reason with the conditional probability

of A given the new information.
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Conditional Probability

• P(A | B) = Fraction of worlds in which B is 

true that also have A true

• Read this as: “Probability of A conditioned 

on B”

• Prior probability P(A) is a special case of the 

conditional probability P(A | ) conditioned on 

no evidence
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Conditional Probability Example

H = “Have a headache”

F = “Coming down with 
Flu”

P(H) = 1/10
P(F) = 1/40

P(H | F) = 1/2

“Headaches are rare and flu 

is rarer, but if you’re coming 

down with ‘flu there’s a 50-
50 chance you’ll have a 

headache.”

F

H

27

Conditional Probability

H = “Have a headache”

F = “Coming down with 
Flu”

P(H) = 1/10
P(F) = 1/40

P(H | F) = 1/2

P(H|F) = Fraction of flu-inflicted 

worlds in which you have a 
headache

flu with  worlds#

headache andflu  with  worlds#


region F"" of Area

region F" and H" of Area


P(F)

F)P(H,


F

H
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Definition of Conditional Probability
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Corollary: The Chain Rule (aka The Product Rule)

)()|(),( BPBAPBAP 
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Important Note

1)|()|(  BAPBAP

1  alwaysnot  does )|()|(  BAPBAP

But:
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The Joint Probability Distribution

• P(A, B ) is called the joint probability 

distribution of A and B

• It captures the probabilities of all 

combinations of the values of a set of 

random variables
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The Joint Probability Distribution

• For example, if A and B are Boolean 
random variables, then P(A,B) could be 
specified as: 

P(A=false, B=false) 0.25

P(A=false, B=true) 0.25

P(A=true, B=false) 0.25

P(A=true, B=true) 0.25
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The Joint Probability Distribution

• Now suppose we have the random variables:
– Drink = {coke, sprite}

– Size = {small, medium, large}

• The joint probability distribution for P(Drink,Size) 
could look like:

P(Drink=coke, Size=small) 0.1

P(Drink=coke, Size=medium) 0.1

P(Drink=coke, Size=large) 0.3

P(Drink=sprite, Size=small) 0.1

P(Drink=sprite, Size=medium) 0.2

P(Drink=sprite, Size=large) 0.2
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Full Joint Probability Distribution

• Suppose you have the complete set of 
random variables used to describe the world

• A joint probability distribution that covers 
this complete set is called the full joint 
probability distribution

• Is a complete specification of one’s 
uncertainty about the world in question

• Very powerful: Can be used to answer any 
probabilistic query


