CS 331: Artificial Intelligence
Probability |

Thanks to Andrew Moore for some course material

Dealing with Uncertainty

» We want to get to the point where we can
reason with uncertainty

« This will require using probability e.g.
probability that it will rain today is 0.99

» We will review the fundamentals of
probability

Outline

1. Random variables
2. Probability

Random Variables

« The basic element of probability is the
random variable

» Think of the random variable as an event
with some degree of uncertainty as to
whether that event occurs

+ Random variables have a domain of values
it can take on

Random Variables

Example:

 ProfLate is a random variable for whether
your prof will be late to class or not

» The domain of ProfLate is {true, false}

— ProfLate = true: proposition that prof
will be late to class

—ProfLate = false: proposition that prof
will not be late to class

Random Variables

Example:

« ProfLate is a random variable for whether
your prof will be late to class or not

» The domain of ProfLate is <true, false>

— ProfLate = true: proposition that prof
will be late to class

N\ You can assign some degree of
- ProfLate —| belief to this proposition e.g.
will not be P(ProfLate = true) = 0.9




Random Variables

Example:

» ProfLate is a random variable for whether
your prof will be late to class or not

» The domain of ProfLate is <true, false>

— ProfLate = true: proposition that prof
will be late to class

— ProfLate = false: proposition that prof
will not be late to class

And to this one e.g.
P(ProfLate = false) = 0.1

Random Variables

» We will refer to random variables with
capitalized names e.g. X, Y, ProfLate

» We will refer to names of values with lower
case names e.g. X, y, proflate

+ This means you may see a statement like
ProfLate = proflate

— This means the random variable ProfLate takes
the value proflate (which can be true or false)

» Shorthand notation:

ProfLate = true is the same as proflate and
ProfLate = false is the same as —proflate

Random Variables

3 types of random variables:

1. Boolean random variables

2. Discrete random variables

3. Continuous random variables

Boolean Random Variables

« Take the values true or false

» E.g. Let A be a Boolean random variable
— P(A =false) = 0.9
—P(A=true)=0.1

Discrete Random Variables

Allowed to taken on a finite number of values
e.g.

* P(DrinkSize=small) = 0.1

» P(DrinkSize=medium) = 0.2

» P(DrinkSize=large) = 0.7

Discrete Random Variables

Values of the domain must be:

* Mutually Exclusive i.e. P(A=v; AND A=v;) =0
ifi=])
This means, for instance, that you can’t have a
drink that is both small and medium

+ Exhaustive i.e. P(A=v; ORA=Vv,OR..ORA=
vy =1
This means that a drink can only be either small,
medium or large. There isn’t an extra large.




Discrete Random Variables

Values of the domain must be:

* Mutually Exclusive i.e. PCA=v; AND A=v;) =0
ifi=]
This means, for 1 The AND here means intersection
drink that is both ie.(A=v;)n(A=V)

» Exhaustiveie. P(A=v;ORA=Vv,0R..ORA =
v)=1
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Th::. meanslthc The OR here means unioni.e. (A=v,; ) U
medium or lar; (A=v,) U ... U (A=v)

Discrete Random Variables

+ Since we now have multi-valued discrete
random variables we can’t write P(a) or
P(—a) anymore

+ We have to write P(A =v;) where v;=a
value in {vy, vy, ..., v}

Continuous Random Variables

» Can take values from the real numbers
» E.g. They can take values from [0, 1]

» Note: We will primarily be dealing with
discrete random variables

* (The next slide is just to provide a little bit
of information about continuous random
variables)

Probability Density Functions

Discrete random variables have probability distributions:
1.0
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Continuous random variables have probability density
functions e.g:

Probabilities

* We will write P(A=true) as “the fraction of
possible worlds in which A is true”

» We can debate the philosophical
implications of this for the next 4 hours

¢ But we won’t
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Probabilities

» We will sometimes talk about the
probabilities of all possible values of a
random variable

* Instead of writing

— P(A=false) = 0.25
— P(A=true) = 0.75
» We will write P(A) = (0.25, 0.75)

Note the boldface!




Visualizing A

Event space of
all possible

worlds Worlds in which P(a) = Area of

Als true reddish oval

Itsareais 1=

Worlds in which A is false

The Axioms of Probability

+ 0<P(@)<1

e P(true) =1

* P(false) =0

* P(a ?R b) = P(a) + P(b) - P(? AND b)

The logical OR is equivalent to set

. The logical AND is equivalent to
union u.

set intersection (M). Sometimes,
I’1l write it as P(a, b)

These axioms are often called Kolmogorov’s axioms in
honor of the Russian mathematician Andrei Kolmogorov

Interpreting the axioms

+ 0<P@)<=1

* P(true) =1

« P(false)=0

* P(aORb)=P(a) + P(b) - P(a, b)

The area of P(g) can't
get any smaller than 0

And a zero area would
mean that there is no
world in which ais not
false

Interpreting the axioms

« 0<P(@)<1

* P(true)=1

* P(false)=0

« P(aORb)=P(a) + P(b) - P(a, b)

The area of P(a) can't
get any bigger than 1

And an area of 1 would
mean all worlds will have
ais true

Interpreting the axioms

« 0<P(@<1

* P(true)=1

« P(false)=0

* P(aORb)=P(a) + P(b) - P(a, b)

P(a, b) [The purple area]

!

P(a OR b) [the area of both circles] 2

Prior Probability

» We can consider P(A) as the unconditional
or prior probability
— E.g. P(ProfLate = true) = 1.0

« Itis the probability of event A in the
absence of any other information

« If we get new information that affects A, we
can reason with the conditional probability
of A given the new information.




Conditional Probability

* P(A | B) = Fraction of worlds in which B is
true that also have A true

* Read this as: “Probability of A conditioned
on B”

« Prior probability P(A) is a special case of the
conditional probability P(A | ) conditioned on
no evidence

Conditional Probability Example

H = "Have a headache”

F = "Coming down with
F Flu”

P(H) = 1/10
P(A) = 1/40
P(H| A =1/2

“Headaches are rare and flu
is rarer, but if you’re coming

down with ‘flu there's a 50-
50 chance you'll have a
headache.”

Conditional Probability

P(HF) = Fraction of flu-inflicted

F worlds in which you have a
headache
_ #worlds with flu and headache
# worlds with flu
H _ Area of "H and F" region
Area of "F" region
_PHPF
H = “Have a headache” P(F)
F = "“Coming down with
Flu”
P(H) = 1/10
P(F) = 1/40 ”
P(H| A =1/2

Definition of Conditional Probability

P(A,B)

PAIB) =5 )

Corollary: The Chain Rule (aka The Product Rule)

P(A,B)=P(A|B)P(B)

Important Note
P(A|B)+P(—A|B)=1
But:

P(A|B)+P(A|—-B) does not always =1

The Joint Probability Distribution

« P(A, B) is called the joint probability
distribution of A and B

« It captures the probabilities of all
combinations of the values of a set of
random variables




The Joint Probability Distribution

 For example, if A and B are Boolean
random variables, then P(A,B) could be

specified as:

P(A=false, B=false) |0.25
P(A=false, B=true) |0.25
P(A=true, B=false) |0.25
P(A=true, B=true) 0.25

The Joint Probability Distribution

» Now suppose we have the random variables:
— Drink = {coke, sprite}
— Size = {small, medium, large}

« The joint probability distribution for P(Drink,Size)
could look like:

P(Drink=coke, Size=small) 0.1
P(Drink=coke, Size=medium) 0.1
P(Drink=coke, Size=large) 0.3
P(Drink=sprite, Size=small) 0.1
P(Drink=sprite, Size=medium) |0.2
P(Drink=sprite, Size=large) 0.2

Full Joint Probability Distribution

 Suppose you have the complete set of

random variables used to describe the world

A joint probability distribution that covers
this complete set is called the full joint
probability distribution

* Is a complete specification of one’s
uncertainty about the world in question

» Very powerful: Can be used to answer any

probabilistic query




