CS 331: Artificial Intelligence Probability I

Outline

1. Random variables
2. Probability

Dealing with Uncertainty

- We want to get to the point where we can reason with uncertainty
- This will require using probability e.g. probability that it will rain today is 0.99
- We will review the fundamentals of probability

Outline
1. Random variables
2. Probability

Random Variables

- The basic element of probability is the random variable
- Think of the random variable as an event with some degree of uncertainty as to whether that event occurs
- Random variables have a domain of values it can take on

Random Variables

Example:

- ProfLate is a random variable for whether your prof will be late to class or not
- The domain of ProfLate is <true, false> - ProfLate $=$ true $:$ proposition that prof will be late to class

Random Variables

Example:

- ProfLate is a random variable for whether your prof will be late to class or not
- The domain of ProfLate is <true, false> - ProfLate $=$ true: proposition that prof will be late to class
- ProfLate $=$ false $:$ proposition that prof will not be late to class
 7

Random Variables

- We will refer to random variables with capitalized names e.g. X, Y, ProfLate
- We will refer to names of values with lower case names e.g. x, y, proflate
- This means you may see a statement like ProfLate $=$ proflate
- This means the random variable ProfLate takes the value proflate (which can be true or false)
- Shorthand notation:

ProfLate $=$ true is the same as proflate and ProfLate $=$ false is the same as \neg proflate

Random Variables

3 types of random variables:

1. Boolean random variables
2. Discrete random variables
3. Continuous random variables

Boolean Random Variables

- Take the values true or false
- E.g. Let A be a Boolean random variable
$-P(A=$ false $)=0.9$
$-P(A=$ true $)=0.1$

Discrete Random Variables

Allowed to taken on a finite number of values e.g.

- $P($ DrinkSize $=$ small $)=0.1$
- $P($ DrinkSize $=$ medium $)=0.2$
- $P($ DrinkSize $=$ large $)=0.7$

Discrete Random Variables

Values of the domain must be:

- Mutually Exclusive i.e. $\mathrm{P}\left(\mathrm{A}=\mathrm{v}_{\mathrm{i}}\right.$ AND $\left.\mathrm{A}=\mathrm{v}_{\mathrm{j}}\right)=0$ if $\mathrm{i} \neq \mathrm{j}$
This means, for instance, that you can't have a drink that is both small and medium
- Exhaustive i.e. $\mathrm{P}\left(\mathrm{A}=\mathrm{v}_{1}\right.$ OR $\mathrm{A}=\mathrm{v}_{2}$ OR ... OR $\mathrm{A}=$ v_{k}) $=1$
This means that a drink can only be either small, medium or large. There isn't an extra large.

Discrete Random Variables

Values of the domain must be:

- Mutually Exclusive i.e. $P\left(A=v_{i}\right.$ AND $\left.A=v_{j}\right)=0$ if $\mathrm{i} \neq \mathrm{j}$
This means, for i The AND here means intersection drink that is both i.e. $\left(A=v_{i}\right) \cap\left(A=v_{j}\right)$
- Exhaustive i.e. $\mathrm{P}\left(\mathrm{A}=\mathrm{v}_{1}\right.$ OR $\mathrm{A}=\mathrm{v}_{2}$ OR \ldots OR $\mathrm{A}=$ v_{k}) $=1$
This means that The OR here means union i.e. $\left(A=v_{1}\right) \cup$ medium or lar $\left(A=v_{2}\right) \cup \ldots \cup\left(A=v_{k}\right)$

Discrete Random Variables

- Since we now have multi-valued discrete random variables we can't write $P(a)$ or $P(\neg a)$ anymore
- We have to write $P\left(A=v_{i}\right)$ where $v_{i}=\mathrm{a}$ value in $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$

Continuous Random Variables

- Can take values from the real numbers
- E.g. They can take values from [0, 1]
- Note: We will primarily be dealing with discrete random variables
- (The next slide is just to provide a little bit of information about continuous random variables)

Probability Density Functions

Discrete random variables have probability distributions:

Continuous random variables have probability density functions e.g:

Probabilities

- We will write $P(A=$ true $)$ as "the fraction of possible worlds in which A is true"
- We can debate the philosophical implications of this for the next 4 hours
- But we won't

Probabilities

- We will sometimes talk about the probabilities of all possible values of a random variable
- Instead of writing
$-P(A=$ false $)=0.25$
- $P(A=$ true $)=0.75$
- We will write $\boldsymbol{P}(A)=(0.25,0.75)$

Note the boldface!

The Axioms of Probability

- $0 \leq \mathrm{P}(a) \leq 1$
- $\mathrm{P}($ true $)=1$
- $\mathrm{P}($ false $)=0$
- $\mathrm{P}(a$ OR $b)=\mathrm{P}(a)+\mathrm{P}(b)-\mathrm{P}(a \operatorname{AND} b)$

The logical OR is equivalent to set union \cup

The logical AND is equivalent to set intersection ($\cap)$. Sometimes, I'll write it as $P(a, b)$

These axioms are often called Kolmogorov's axioms in honor of the Russian mathematician Andrei Kolmogorov

Interpreting the axioms

- $0 \leq \mathrm{P}(a) \leq=1$
- $\mathrm{P}($ true $)=1$
- $\mathrm{P}($ false $)=0$
- $\mathrm{P}(a \mathrm{OR} b)=\mathrm{P}(a)+\mathrm{P}(b)-\mathrm{P}(a, b)$

The area of $P(a)$ can't get any smaller than 0

And a zero area would mean that there is no world in which a is not false

Interpreting the axioms

- $0 \leq \mathrm{P}(a) \leq 1$
- $\mathrm{P}($ true $)=1$
- $\mathrm{P}(f a l s e)=0$
- $\mathrm{P}(a \mathrm{OR} b)=\mathrm{P}(a)+\mathrm{P}(b)-\mathrm{P}(a, b)$

Prior Probability

- We can consider $P(A)$ as the unconditional or prior probability
- E.g. $P($ ProfLate $=$ true $)=1.0$
- It is the probability of event A in the absence of any other information
- If we get new information that affects A, we can reason with the conditional probability of A given the new information.

Conditional Probability

- $\mathrm{P}(A \mid B)=$ Fraction of worlds in which B is true that also have A true
- Read this as: "Probability of A conditioned on B "
- Prior probability $\mathrm{P}(A)$ is a special case of the conditional probability $\mathrm{P}(A \mid)$ conditioned on no evidence

Conditional Probability Example

H = "Have a headache" $F=$ "Coming down with Flu"
$P(H)=1 / 10$
$P(F)=1 / 40$
$\mathrm{P}(H \mid F)=1 / 2$
"Headaches are rare and flu is rarer, but if you're coming down with 'flu there's a 5050 chance you'll have a headache."

Conditional Probability

$H=$ "Have a headache"
$\mathrm{P}(H \mid F)=$ Fraction of flu-inflicted worlds in which you have a headache
$=$ \# worlds with flu and headache
$=\frac{\text { Area of " } \mathrm{H} \text { and } \mathrm{F} \text { " region }}{\text { Area of " } \mathrm{F} \text { " region }}$
$=\frac{\mathrm{P}(\mathrm{H}, \mathrm{F})}{\mathrm{P}(\mathrm{F})}$
$F=$ "Coming down with
Flu"
$P(H)=1 / 10$
$\mathrm{P}(F)=1 / 40$
$\mathrm{P}(H \mid F)=1 / 2$

Important Note

$$
P(A \mid B)+P(\neg A \mid B)=1
$$

But:

$$
P(A \mid B)+P(A \mid \neg B) \text { does not always }=1
$$

The Joint Probability Distribution

- $\mathrm{P}(A, B)$ is called the joint probability distribution of A and B
- It captures the probabilities of all combinations of the values of a set of random variables

The Joint Probability Distribution

- For example, if A and B are Boolean random variables, then $\mathrm{P}(A, B)$ could be specified as:

$\mathrm{P}(A=$ false, $B=$ false $)$	0.25
$\mathrm{P}(A=$ false,$B=$ true $)$	0.25
$\mathrm{P}(A=$ true,$B=$ false $)$	0.25
$\mathrm{P}(A=$ true,$B=$ true $)$	0.25

The Joint Probability Distribution

- Now suppose we have the random variables:
- Drink $=\{$ coke, sprite $\}$
- Size $=\{$ small, medium, large $\}$
- The joint probability distribution for $\mathrm{P}($ Drink,Size $)$ could look like:

$\mathrm{P}($ Drink $=$ coke, Size $=$ small $)$	0.1
$\mathrm{P}($ Drink $=$ coke, Size $=$ =medium $)$	0.1
$\mathrm{P}($ Drink $=$ coke, Size $=$ large $)$	0.3
$\mathrm{P}($ Drink $=$ sprite, Size $=$ small $)$	0.1
$\mathrm{P}($ Drink $=$ sprite, Size $=$ medium $)$	0.2
$\mathrm{P}($ Drink $=$ sprite, Size=large $)$	0.2

- Suppose you have the complete set of random variables used to describe the world
- A joint probability distribution that covers this complete set is called the full joint probability distribution
- Is a complete specification of one's uncertainty about the world in question
- Very powerful: Can be used to answer any probabilistic query

