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CS 331: Artificial Intelligence

Fundamentals of Probability II

Thanks to Andrew Moore for some course material
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Full Joint Probability Distributions
Coin Card Candy P(Coin, Card, Candy)

tails black 1 0.15

tails black 2 0.06

tails black 3 0.09

tails red 1 0.02

tails red 2 0.06

tails red 3 0.12

heads black 1 0.075

heads black 2 0.03

heads black 3 0.045

heads red 1 0.035

heads red 2 0.105

heads red 3 0.21

This cell means P(Coin=heads, Card=red, Candy=3) = 0.21

The probabilities 

in the last column 

sum to 1

Joint Probability Distribution
From the full joint probability distribution, we can calculate any 

probability involving these three random variables. 

e.g. P(Coin = heads OR Card = red) 

Joint Probability Distribution
P(Coin = heads OR Card = red) =

P( Coin=heads, Card=black, Candy=1 ) +

P( Coin=heads, Card=black, Candy=2 ) +

P( Coin=heads, Card=black, Candy=3 ) +

P( Coin=tails, Card=red, Candy=1 ) +

P( Coin=tails, Card=red, Candy=2 ) +

P( Coin=tails, Card=red, Candy=3 ) +

P( Coin=heads, Card=red, Candy=1 ) +

P( Coin=heads, Card=red, Candy=2 ) +

P( Coin=heads, Card=red, Candy=3 ) 

= 0.075 + 0.03 + 0.045 + 0.02 + 0.06 + 0.12 + 0.035 + 0.105 + 

0.21 = 0.7
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Marginalization

We can even calculate marginal probabilities

(the probability distribution over a subset of the 

variables) e.g.: 

P(Coin=tails, Card=red ) = 

P(Coin=tails, Card=red, Candy=1) + 

P(Coin=tails, Card=red, Candy=2 ) + 

P(Coin=tails, Card=red, Candy=3 )

= 0.02 + 0.06 + 0.12 = 0.2 6

Marginalization

Or even:

P( Card=black ) = 

P( Coin=heads, Card=black, Candy=1) + 

P( Coin=heads, Card=black, Candy=2 ) + 

P( Coin=heads, Card=black, Candy=3 ) + 

P( Coin=tails, Card=black, Candy=1) + 

P(Coin=tails, Card=black, Candy=2 ) + 

P(Coin=tails, Card=black, Candy=3 ) 

= 0.075 + 0.03 + 0.045 + 0.015 + 0.06 + 0.09 = 0.315
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Marginalization

The general marginalization rule for any sets

of variables Y and Z: 


z

z),()( YPYP


z

zz )()|()( PYPYP

or

z is over all possible 

combinations of values of Z

(remember Z is a set)
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Marginalization

For continuous variables, marginalization 

involves taking the integral: 

 zz d),()( YPYP

Practice
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Coin Card Candy P(Coin, Card, Candy)

tails black 1 0.15

tails black 2 0.06

tails black 3 0.09

tails red 1 0.02

tails red 2 0.06

tails red 3 0.12

heads black 1 0.075

heads black 2 0.03

heads black 3 0.045

heads red 1 0.035

heads red 2 0.105

heads red 3 0.21

Conditional Probabilities

Conditional Probabilities Conditional Probabilities

Note that 

1/P(Card=black) 

remains constant in 

the two equations.
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Normalization Practice
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Coin Card Candy P(Coin, Card, Candy)

tails black 1 0.15

tails black 2 0.06

tails black 3 0.09

tails red 1 0.02

tails red 2 0.06

tails red 3 0.12

heads black 1 0.075

heads black 2 0.03

heads black 3 0.045

heads red 1 0.035

heads red 2 0.105

heads red 3 0.21
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Inference 

• Suppose you get a query such as 

P(Card = red | Coin = heads)

Card is called the query variable (we’ll 

assume it’s a single variable for now)

Coin is called the evidence variable 

because we observe it.  More generally, 

it’s a set of variables.

There are also unobserved (aka hidden) variables like Candy
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Inference

• We will write the query as P(X | e)

This is a probability distribution 

hence the boldface

X = Query variable (a single variable for now)

E = Set of evidence variables

e = the set of observed values for the evidence variables

Y = Unobserved variables

Inference

We will write the query as P(X | e)


y

yePePeP ),,(),()|( XXX 

X = Query variable (a single variable for now)

E = Set of evidence variables

e = the set of observed values for the evidence variables

Y = Unobserved variables

Summation is over all possible 

combinations of values of the 

unobserved variables Y
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Inference


y

yePePeP ),,(),()|( XXX 

Computing P(X | e) involves going through all 

possible entries of the full joint probability 

distribution and adding up probabilities with X=xi, 

E=e,  and Y=y

Suppose you have a domain with n Boolean 

variables.  What is the space and time complexity of 

computing P(X | e)?
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Independence

• How do you avoid the exponential space 

and time complexity of inference?

• Use independence (aka factoring)
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Independence

We say that variables X and Y are 

independent if any of the following hold: 

(note that they are all equivalent)

)()|( XYX PP 

)()|( YXY PP 

)()(),( YXYX PPP 

or

or
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Independence
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Independence
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Why is independence useful?

This table has 2 values This table has 3 values

• You now need to store 5 values to calculate P(Coin, Card, 

Candy)

• Without independence, we needed 6
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Independence

Another example:

• Suppose you have n coin flips and you want to 

calculate the joint distribution P(C1, …, Cn)

• If the coin flips are not independent, you need 2n

values in the table

• If the coin flips are independent, then





n

i

in CPCCP
1

1 )(),...,( Each P(Ci) table has 2 

entries and there are n of 

them for a total of 2n values 
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Independence

• Independence is powerful!

• It required extra domain knowledge. A 

different kind of knowledge than numerical 

probabilities.  It needed an understanding of 

relationships among the random variables.

Practice
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Coin Card Candy P(Coin, Card, Candy)

tails black 1 0.15

tails black 2 0.06

tails black 3 0.09

tails red 1 0.02

tails red 2 0.06

tails red 3 0.12

heads black 1 0.075

heads black 2 0.03

heads black 3 0.045

heads red 1 0.035

heads red 2 0.105

heads red 3 0.21

Are Coin and Card 

independent in this

distribution?

Recall: 

for independent X and Y

)()|( XYX PP 

)()|( YXY PP 

)()(),( YXYX PPP 


