CS 331: Artificial Intelligence Fundamentals of Probability III

Full Joint Probability Distributions

Coin	Card	Candy	$\mathbf{P}($ Coin, Card, Candy $)$
tails	black	1	0.15
tails	black	2	0.06
tails	black	3	0.09
tails	red	1	0.02
tails	red	2	0.06
tails	red	3	0.12
heads	black	1	0.075
heads	black	2	0.03
heads	black	3	0.045
heads	red	1	0.035
heads	red	2	0.105
heads	red	3	0.21

Marginalization

The general marginalization rule for any sets of variables \boldsymbol{Y} and \boldsymbol{Z} :

$$
\begin{aligned}
& \boldsymbol{P}(\boldsymbol{Y})=\sum_{\mathbf{z}} \boldsymbol{P}(\boldsymbol{Y}, \mathbf{z}) \\
& \text { or } \\
& \boldsymbol{P}(\boldsymbol{Y})=\sum_{\mathbf{z}} \boldsymbol{P}(\boldsymbol{Y} \mid \mathbf{z}) P(\mathbf{z})
\end{aligned}
$$

Conditional Probabilities

We can also compute conditional probabilities from the joint. Recall:

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

Inference

We will write the query as $\boldsymbol{P}(X \mid \boldsymbol{e})$

$$
\begin{aligned}
& \qquad \boldsymbol{P}(X \mid \boldsymbol{e})=\alpha \boldsymbol{P}(X, \boldsymbol{e})=\alpha \sum_{\boldsymbol{y}} \boldsymbol{P}(X, \boldsymbol{e}, \boldsymbol{y}) \\
& \begin{array}{l}
\text { Summation is over all possible } \\
\text { combinations of values of the } \\
\text { unobserved variables } \boldsymbol{Y}
\end{array}
\end{aligned}
$$

$X=$ Query variable (a single variable for now)
$\boldsymbol{E}=$ Set of evidence variables
$\boldsymbol{e}=$ the set of observed values for the evidence variables
$\boldsymbol{Y}=$ Unobserved variables

Bayes' Rule

The product rule can be written in two ways:
$\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})$
$\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})$

You can combine the equations above to get:

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}
$$

Bayes’ Rule

More generally, the following is known as Bayes' Rule:

$$
\boldsymbol{P}(A \mid B)=\frac{\boldsymbol{P}(B \mid A) \boldsymbol{P}(A)}{\boldsymbol{P}(B)}
$$

Note that these are distributions

Sometimes, you can treat $\boldsymbol{P}(\mathrm{B})$ as a normalization constant α

$$
\boldsymbol{P}(A \mid B)=\alpha \boldsymbol{P}(B \mid A) \boldsymbol{P}(A)
$$

More General Forms of Bayes Rule

If A takes 2 values:

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B \mid A) P(A)+P(B \mid \neg A) P(\neg A)}
$$

If A takes n_{A} values:

$$
P\left(A=v_{i} \mid B\right)=\frac{P\left(B \mid A=v_{i}\right) P\left(A=v_{i}\right)}{\sum_{k=1}^{n_{A}} P\left(B \mid A=v_{k}\right) P\left(A=v_{k}\right)}
$$

When is Bayes Rule Useful?

Sometimes it's easier to get $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$ than $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$.

Information is typically available in the form $P($ effect | cause) rather than $\mathrm{P}($ cause | effect)

For example, P (symptom | disease) is easy to measure empirically but obtaining P (disease symptom) is harder

Bayes Rule Example

Meningitis causes stiff necks with probability 0.5 . The prior probability of having meningitis is 0.00002 . The prior probability of having a stiff neck is 0.05 . What is the probability of having meningitis given that you have a stiff neck?

Let $m=$ patient has meningitis
Let $s=$ patient has stiff neck
$\mathrm{P}(s \mid m)=0.5$
$\mathrm{P}(m)=0.00002$
$\mathrm{P}(s)=0.05$
$P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{(0.5)(0.00002)}{0.05}=0.0002$

Bayes Rule Example

Meningitis causes stiff necks with probability 0.5 . The prior probability of having meningitis is 0.00002 . The prior probability of having a stiff neck is 0.05 . What is the probability of having meningitis given that you have a stiff neck?

Let $m=$ patient has meningitis
Let $s=$ patient has stiff neck
$\mathrm{P}(s \mid m)=0.5$
$\mathrm{P}(m)=0.00002$

Note: Even though $\mathrm{P}(\mathrm{s} \mid \mathrm{m})=0.5$,
$P(\mathrm{~m} \mid \mathrm{s})=0.0002$
$\mathrm{P}(s)=0.05$

$$
P(m \mid s)=\frac{P(s \mid m) P(m)}{P(s)}=\frac{(0.5)(0.00002)}{0.05}=0.0002
$$

How is Bayes Rule Used

In machine learning, we use Bayes rule in the following way:

Prior probability
$h=$ hypothesis
$D=$ data
$\underbrace{\boldsymbol{P}(h \mid D)}=\frac{\boldsymbol{P}(D \mid h) \boldsymbol{P}(h)}{\boldsymbol{P}(D)}$

Bayes Rule With More Than One Piece of Evidence

Suppose you now have 2 evidence variables Card=red and Candy=1 (note that Coin is uninstantiated below)
$\boldsymbol{P}($ Coin \mid Card $=$ red, Candy $=1)$
$=\alpha \boldsymbol{P}($ Card $=$ red, Candy $=1 \mid$ Coin $) \boldsymbol{P}($ Coin $)$
In order to calculate $\boldsymbol{P}($ Card $=$ red, Candy $=1 \mid$ Coin $)$, you need a table of 6 probability values. With N Boolean evidence variables, you need 2^{N} probability values.

Independence

We say that variables X and Y are independent if any of the following hold:
(note that they are all equivalent)

$$
\begin{aligned}
& \boldsymbol{P}(X \mid Y)=\boldsymbol{P}(X) \text { or } \\
& \boldsymbol{P}(Y \mid X)=\boldsymbol{P}(Y) \text { or } \\
& \boldsymbol{P}(X, Y)=\boldsymbol{P}(X) \boldsymbol{P}(Y)
\end{aligned}
$$

Why is independence useful?

$P($ Card, Candy $)=P($ Card $) P($ Candy $)$

- You now need to store 5 values to calculate \boldsymbol{P} (Coin, Card, Candy)
- Without independence, we needed 6

Conditional Independence

Suppose I tell you that to select a piece of Candy, I first flip a Coin. If heads, I select a Card from one (stacked) deck; if tails, I select from a different (stacked) deck. The color of the card determines the bag I select the Candy from, and each bag has a different mix of the types of Candy.

Are Coin and Candy independent?

Conditional Independence

Suppose I tell you that to select a piece of Candy, I first flip a Coin. If heads, I select a Card from one deck; if tails, I select from a different deck. The color of the card determines the bag I select the Candy from, and each bag has a different mix of the types of Candy.

Are Coin and Candy independent? No.

But given Card, they are independent!

$$
\begin{aligned}
& P(\text { Coin }=\text { heads }, \text { Cand }=3 \mid \text { Card })= \\
& P(\text { Coin }=\text { heads } \mid \text { Card }) \times P(\text { Candy }=3 \mid \text { Card })
\end{aligned}
$$

Conditional Independence

General form:

$\boldsymbol{P}(A, B \mid C)=\boldsymbol{P}(A \mid C) \boldsymbol{P}(B \mid C)$
Or equivalently:
$\boldsymbol{P}(A \mid B, C)=\boldsymbol{P}(A \mid C)$ and
$\boldsymbol{P}(B \mid A, C)=\boldsymbol{P}(B \mid C)$
How to think about conditional independence:
In $\mathrm{P}(A \mid B, C)=\mathrm{P}(A \mid C)$: if knowing C tells me everything about A, I don't gain anything by knowing B

Conditional Independence

Conditional independence permits probabilistic systems to scale up!

Candy Example

Coin	$\mathbf{P}($ Coin $)$
tails	0.5
heads	0.5

Coin	Card	$\mathbf{P}($ Card \| Coin $)$
tails	black	0.6
tails	red	0.4
heads	black	0.3
heads	red	0.7

Card	Candy	P(Candy \mid Card $)$
black	1	0.5
black	2	0.2
black	3	0.3
red	1	0.1
red	2	0.3
red	3	0.6

$$
\begin{gathered}
P(\text { Coin }=\text { heads }, \text { Card }=\text { red }, \text { Candy }=3)= \\
P(\text { Coin }=\text { heads }) \times P(\text { Card }=\text { red } \mid \text { Coin }=\text { heads }) \times \\
P(\text { Candy }=3 \mid \text { Card }=\text { red })=
\end{gathered}
$$

$$
0.5 \times 0.7 \times 0.6=0.21
$$

Practice

Coin	$\mathbf{P}($ Coin $)$
tails	0.5
heads	0.5

Coin	Card	P(Card \mid Coin $)$
tails	black	0.6
tails	red	0.4
heads	black	0.3
heads	red	0.7

Card	Candy	$\mathbf{P}($ Candy \mid Card $)$
black	1	0.5
black	2	0.2
black	3	0.3
red	1	0.1
red	2	0.3
red	3	0.6

Compute $P($ Coin $=$ tails \mid Card $=$ red $)$

What You Should Know

- How to do inference in joint probability distributions
- How to use Bayes Rule
- Why independence and conditional independence is useful

