

Thanks to Andrew Moore for some course material

Full Joint Probability Distributions								
Coin	Card	Candy	P(Coin Card Candy)					

Coin	Card	Candy	P(Coin, Card, Candy)	
tails	black	1	0.15	
tails	black	2	0.06	The probabilities
tails	black	3	0.09	in the last column
tails	red	1	0.02	sum to 1
tails	red	2	0.06	
tails	red	3	0.12	
heads	black	1	0.075	
heads	black	2	0.03	
heads	black	3	0.045	
heads	red	1	0.035	
heads	red	2	0.105	
heads	red	3	0.21	←

Conditional Probabilities We can also compute conditional probabilities from the joint. Recall: $P(A|B) = \frac{P(A,B)}{P(B)}$

When is Bayes Rule Useful?

Sometimes it's easier to get P(X|Y) than P(Y|X).

Information is typically available in the form P(effect | cause) rather than P(cause | effect)

For example, P(symptom | disease) is easy to measure empirically but obtaining P(disease | symptom) is harder

Bayes Rule Example

9

Meningitis causes stiff necks with probability 0.5. The prior probability of having meningitis is 0.00002. The prior probability of having a stiff neck is 0.05. What is the probability of having meningitis given that you have a stiff neck?

Let *m* = patient has meningitis Let *s* = patient has stiff neck P(*s* | *m*) = 0.5 P(*m*) = 0.00002 P(*s*) = 0.05 $P(m | s) = \frac{P(s | m)P(m)}{P(s)} = \frac{(0.5)(0.00002)}{0.05} = 0.0002$

Bayes Rule With More Than One Piece of Evidence

Suppose you now have 2 evidence variables *Card=red* and *Candy=1* (note that Coin is uninstantiated below)

P(Coin | Card=red, Candy=1)= $\alpha P(Card=red, Candy=1 | Coin) P(Coin)$

In order to calculate P(Card=red, Candy=1 | Coin), you need a table of 6 probability values. With N Boolean evidence variables, you need 2^N probability values.

13

		(Can	ldy Exa	mp	le	
Coin	P(Coin)	Coin	Card	P(Card Coin)	Card	Candy	P(Candy Card)
tails	0.5	tails	black	0.6	black	1	0.5
heads	0.5	tails	red	0.4	black	2	0.2
		heads	black	0.3	black	3	0.3
		heads	red	0.7	red	1	0.1
					red	2	0.3
					red	3	0.6
	P(C P(Coin P(Cano	Coin = hec dy = 3	head ids)> Card	ls, Card = r $< P(Card = l = red) =$	ed,Ca red C	ndy = 3 oin = h	3) = eads) ×
			0.5	× 0.7 × 0.6 =	= 0.21		20

